نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه کردستان

2 گروه زمین شناسی، دانشگاه خوارزمی تهران ( کار شناس زمین‌شناسی شرکت مهندسین مشاور مهاب قدس)

3 دانشیار گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه کردستان

چکیده

علم پردازش تصویر، از علوم پرکاربرد در فنون مهندسی می‌باشد و از دیرباز مطالعات و تحقیقات گسترده‌ای در این زمینه صورت گرفته و پیشرفت‌های فراوانی حاصل شده‌است. سرعت پایین و مخرب بودن روش‌های رایج قبلی اهمیت استفاده از تکنیک پردازش تصویر در محاسبه منافذ و توزیع اندازه ذرات را دوچندان می‌کند. در این تحقیق شش نمونه خاک دست‌خورده و شش نمونه دست‌نخورده درشت بافت (Sandy) نمونه‌برداری شد. با استفاده از نمونه‌های دست‌خورده منحنی دانه‌بندی و تخلخل کل با روش‌های معمول آزمایشگاهی اندازه‌گیری شد. از نمونه‌های دست‌نخورده هم تصاویر سی‌بی سی‌تی اسکن در آزمایشگاه عکس‌برداری تهیه شد و پس از پردازش تصاویر ویژگی‌های دانه‌بندی، تخلخل کل، تخلخل غیرمفید و مفید این نمونه‌ها تعیین شد. صحت‌سنجی نتایج ویژگی‌های تخمین زده شده با روش پردازش تصاویر سی‌بی سی‌تی اسکن نسبت به داده‌های به دست‌آمده از روش‌های آزمایشگاهی، با پارامترهای آماری مورد ارزیابی قرارگرفت. ضریب همبستگی پیرسون بین داده آزمایشگاهی و داده‌های اخذ شده از پردازش تصاویر سی‌بی سی‌تی اسکن 98/0 می‌باشد. نتایج ارزیابی صحت نشان داد (082/1، 229/1، 108/1 و 334/2 به ترتیب برای میانگین قدرمطلق انحرافات، میانگین مربعات خطا، ریشه میانگین مربعات خطا، میانگین درصد خطای مطلق) که استفاده از تصاویر CBCT-scan و تکنیک پردازش تصویر با دقت قابل قبولی می‌تواند ویژگی‌های هندسی خاک‌های درشت بافت را تخمین بزند. همچنین نتایج نشان دادند که بهترین روش آستانه‌گذاری تصاویر برای پردازش تصاویر در نرم افزار Imagej روشOstu & Intermodes تعیین شد.

کلیدواژه‌ها

عنوان مقاله [English]

Assessing parameters of distribution particle size and pores of a coarse-textured soils using CBCT-scan image processing

نویسندگان [English]

  • Majed Ghosairy Sabry 1
  • Kamal Ganjalipour 2
  • Kamal Nabiollahi 3

1 MSc student, Soil Science and Engineering Department, Agriculture Faculty, University of Kurdistan

2 PhD in Engineering Geology, Kharazmi University of Tehran (Geology Expert, Mahab Ghods Consulting Engineers Company)

3 Department of Soil Science and engineering, University of Kurdistan

چکیده [English]

Introduction: CT scan was first invented by Hounsfield in the twentieth century in 1972. But it was soon used in engineering, agriculture, biology, physics, chemistry, etc. Recently, with advances in computed tomography at the global level, the use of different generations of X-rays on a micrometer scale to study some of the different phenomena in soil science has begun. Due to the lack of geotechnical and soil mechanics studies in many engineering projects, CT scan image processing method can be used as a suitable method for extracting soil particle size and other soil characteristics. The main purpose of this study: a) The use of CBCT-scan in soil science for the first time in Iran. B) Comparing the ability of CBCT-scan in terms of quality of results with conventional methods. C) Identify the best filter and binary method (threshold). Another goal of this research is to acquaint more researchers with the application of computed tomography (CT-scan) technology in soil science studies.
Material and Methods: The sampling area for this study was located in Diwandareh-Saqez axis in Kurdistan province, where six disturbed and undisturbed soil samples were collected in a sandy area (12 samples in total). In disturbed samples, particle size distribution was measured by ASTM D421 method, and the porosity of the samples was measured directly using the fuzzy equations in soil mechanics. In a radiology laboratory, three-dimensional images of intact soil samples were taken using a Planmeca Promax 3D CBCT CT scanner. In this study, ImageJ software was used to process CBCT-scan images. With this software, the percentage of phases, number of particles and particle size can be calculated. One of the most important steps in image processing is generating binary images. A total of 17 global thresholding methods have been proposed for generating binary images in ImageJ software. In this study, 15 standard methods for generating binary images were examined and the best method was selected. The total pore volume and soil particle size distribution of each sample calculated by quantifying X-ray images were compared with the total pore volume and soil particle size distribution obtained in the soil science laboratory and performance of the CT scan method evaluated by statistical parameters including The results of the accuracy evaluation for the correlation coefficient, mean absolute value of deviations, mean square error, root mean square error, and mean absolute error percentage.
Results and discussion: The most significant point in image processing is the image thresholding method. In this study, due to the nature of CBCT-scan images, global thresholding was preferred. From the results of image processing, it can be understood that the results of binary images with Otsu and Intermodes methods are in complete agreement with the laboratory sample. The average of total porosity of the processing image slides is 44.03%, which is approximately consistent with the calculated 45/6% for the laboratory sample. Also, the average of ineffective porosity of the samples is about 6.53%. Therefore, it can be said that the effective porosity of the samples is about 37.5%. The results of the accuracy evaluation for the correlation coefficient, mean absolute value of deviations, mean square error, root mean square error, and mean absolute error percentage were 0.98, 1.082, 1.229, 1.108 and 2.334 respectively, indicating that the use of CBCT-scan images and image processing technique can identify and evaluate the geometric properties of granular soils with acceptable accuracy. The advantages of the computed tomography method of the soil are: (1) Obtaining information from the three-dimensional structure of the soil with appropriate accuracy in a short time, (2) Non-destructiveness of this method, and (3) Accurate separation into soil phases in different energy radiations.
Conclusion: Using the processes defined by the authors for image processing, this technique is well able to determine some engineering features such as particle size distribution, total porosity, effective porosity and ineffective porosity. Also, the best thresholding method for binary images and processing in ImageJ is the Ostu and Intermodes method. The accuracy of the device used in this research is 0.2 mm, in other words, spaces or grains smaller than this value cannot be identified; For this reason, in the present study, the term coarse-textured soils, which means gravel to coarse-grained sand, has been emphasized. The results of evaluating the statistical parameters testify to the accuracy and ability of this method.

کلیدواژه‌ها [English]

  • Otsu
  • Intermodes
  • ImageJ software
  • Granulation curve
  • porosity
  • computed tomography
  1. References

    1. Al-Raoush, R. and Papadopoulos, A. 2010. Representative elementary volume analysis of porous media using X-ray computed tomography. Powder technology, 200(1-2): 69-77.
    2. Braja, M. Das. 2011 Principles of Foundation Engineering. 7th Edition, Centage Publisher.
    3. Crestana, S., Cesareo, R., and Mascarenhas, S. 1986. Using a computed tomography miniscanner in soil science. Soil Science, 142(1): 56.
    4. Hainsworth, J. M. and Aylmore, L. A. G. 1983. The use of computer assisted tomography to determine spatial distribution of soil water content. Soil Research, 21(4): 435-443.
    5. Hamamoto, S., Moldrup, P., Kawamoto, K., Sakaki, T., Nishimura, T., and Komatsu, T. 2016. Pore network structure linked by X-ray CT to particle characteristics and transport parameters. Soils and Foundations, 56(4): 676-690.
    6. Han, Q., Zhou, X., Liu, L., Zhao, Y., and Zhao, Y. 2019. Three-dimensional visualization of soil pore structure using computed tomography. Journal of Forestry Research, 30(3): 1053-1061.
    7. Horgan, G. 1998. Mathematical morphology for analysing soil structure from images. European Journal of Soil Science, 49(2): 161-173.
    8. Luo, L., Lin, H., and Li, S. 2010. Quantification of 3-D soil macropore networks in different soil types and land uses using computed tomography. Journal of Hydrology, 393(1-2): 53-64.
    9. McEwan, I. K., Sheen, T. M., Cunningham, G. J., and Allen, A. R. 2000. Estimating the size composition of sediment surfaces through image analysis. In Proceedings of the Institution of Civil Engineers-Water and Maritime Engineering. 142(4): 189-195. Thomas Telford Ltd.
    10. Meng, C., Niu, J., Li, X., Luo, Z., Du, X., Du, J., and Yu, X. 2017. Quantifying soil macropore networks in different forest communities using industrial computed tomography in a mountainous area of North China. Journal of Soils and Sediments, 17(9): 2357-2370.
    11. Müller, K., Katuwal, S., Young, I., McLeod, M., Moldrup, P., de Jonge, L. W., and Clothier, B. 2018. Characterising and linking X-ray CT derived macroporosity parameters to infiltration in soils with contrasting structures. Geoderma, 313: 82-91.
    12. Naime, J. D. M. 2001. Um novo método para estudos dinâmicos, in situ, da infiltração da água na região não-saturada do solo. Embrapa Instrumentação-Tese/dissertação (ALICE).
    13. Naveed, M., Moldrup, P., Arthur, E., Wildenschild, D., Eden, M., Lamandé, M., and de Jonge, L. W. 2013. Revealing soil structure and functional macroporosity along a clay gradient using X‐ray computed tomography. Soil Science Society of America Journal, 77(2): 403-411.
    14. Nunan, N., Ritz, K., Rivers, M., Feeney, D. S., and Young, I. M. 2006. Investigating microbial micro-habitat structure using X-ray computed tomography. Geoderma, 133(3-4): 398-407.
    15. Petrovic, A. M., Siebert, J. E., and Rieke, P. E. 1982. Soil bulk density analysis in three dimensions by computed tomographic scanning. Soil Science Society of America Journal, 46(3): 445-450.
    16. Pierret, A., Capowiez, Y., Belzunces, L., and Moran, C. J. 2002. 3D reconstruction and quantification of macropores using X-ray computed tomography and image analysis. Geoderma, 106(3-4): 247-271.
    17. Pires, L. F., Roque, W. L., Rosa, J. A., and Mooney, S. J. 2019. 3D analysis of the soil porous architecture under long term contrasting management systems by X-ray computed tomography. Soil and Tillage Research, 191: 197-206.
    18. Rab, M. A., Haling, R. E., Aarons, S. R., Hannah, M., Young, I. M., and Gibson, D. 2014. Evaluation of X-ray computed tomography for quantifying macroporosity of loamy pasture soils. Geoderma, 213: 460-470.
    19. Stampanoni, M., Borchert, G., Abela, R., and Rüegsegger, P. 2003. Nanotomography based on double asymmetrical Bragg diffraction. Applied Physics Letters, 82(17): 2922-2924.
    20. Tracy, S. R., Roberts, J. A., Black, C. R., McNeill, A., Davidson, R., and Mooney, S. J. 2010. The X-factor: visualizing undisturbed root architecture in soils using X-ray computed tomography. Journal of experimental botany, 61(2): 311-313.
    21. Vaz, C. M., De Maria, I. C., Lasso, P. O., and Tuller, M. 2011. Evaluation of an advanced benchtop micro‐computed tomography system for quantifying porosities and pore‐size distributions of two Brazilian Oxisols. Soil Science Society of America Journal, 75(3): 832-841.
    22. Vaz, C. M. P., Tuller, M., Lasso, P. R. O., and Crestana, S. 2014. New perspectives for the application of high-resolution benchtop X-ray microCT for quantifying void, solid and liquid phases in soils. In Application of soil physics in environmental analyses, 261-281. Springer, Cham.
    23. Wang, W., Kravchenko, A. N., Johnson, T., Srinivasan, S., Ananyeva, K. A., Smucker, A. J. M., and Rivers, M. L. 2013. Intra‐aggregate pore structures and Escherichia coli distribution by water flow within and movement out of soil macroaggregates. Vadose Zone Journal, 12(4): 1-14.