تغییر و تحول خاک های تشکیل شده از مواد مادری رسوبی مختلف در ناودیس شیخ، شمال شرق بجنورد

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای خاکشناسی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، ایران

2 2- استاد گروه علوم خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، ایران

3 استادیار گروه علوم زمین، دانشگاه گلستان، ایران

4 دانشیار گروه علوم خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، ایران

چکیده

به منظور مطالعه تاثیر ویژگی‌های سنگ مادر بر ویژگی‌های خاک، تنوعی از سنگ­های رسوبی از شش سازند در ناودیس شیخ )شمال شرق بجنورد( انتخاب گردیدند که شامل سنگانه (شیل)، آب‌دراز و کلات (سنگ­های آهکی) پسته‌لیق (سنگ رس)، خانگیران (ماسه­سنگ) و نئوژن (مارن گچ‌دار) می‌باشند و مکان حفر خاکرخ­ها بر روی پایدارترین سطوح ژئومورفیک موجود بر روی سازند­ها و به گونه‌ای انتخاب گردید که خاک­ها بیشترین وابستگی را به سنگ مادر زیرین خود داشته باشند. بجز خاکرخ­های مطالعه شده بر روی سازندهای کلات و آب­دراز که بر روی شیب کناری حفر شده­اند، سایر خاکرخ ها بر روی قله شیب حفر شدند. مقایسه تکامل خاک­های حاصل از سنگ­های آهکی نشان می­دهد که درجه تکامل آنها متاثر از تفاوت نوع سنگ­های آهکی می­باشد؛ همچنین وجود ذرات درشت کوارتزی در ماسه سنگ و نبود کانی­های قابل هوادیدگی محدودیت اصلی برای تحول خاک از ماسه­سنگ است. نتایج نشان می­دهد که تکامل خاک از سنگ­های مادری ریز‌بافت شامل شیل، سنگ رس و مارن گچی متاثر از مقدار و نوع کانی‌های رسی و نیز مقدار گچ می‌باشد به‌طوری‌که فراوانی اسمکتیت به همراه درصد زیاد رس موجب تشکیل خاک­های ورتی‌سول بر روی سنگ رس شده است در حالی‌که با وجود اسمکتیت قابل توجه، حضور مقدار زیاد گچ در خاک­های حاصل از مارن­های گچی موجب تعدیل انبساط و انقباض و مانع تشکیل ورتی‌سول می‌شود. نتایج نشان می‌دهد که پایداری زمین­نما، استعداد خوب هوادیدگی و ترکیب کانی­های رسی موجود در شیل از مهم‌ترین عوامل تشکیل خاک‌های عمیق‌تر و با تکامل بیشتر بر روی شیل­های سازند سنگانه) می‌باشند.

کلیدواژه‌ها


عنوان مقاله [English]

Evolution of the soils derived from different sedimentary parent rocks in Sheikh Syncline, northeastern Bojnourd

نویسندگان [English]

  • H. Tazikeh 1
  • F. Khormali 2
  • A. Amini 3
  • M. Barani Motlagh 4
1 Department of Soil Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
2 Department of Soil Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
3 Department of Geology, Golestan University, Gorgan, Iran
4 Department of Soil Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
چکیده [English]

 

  1. Abtahi, A., Khormali, F. 2001. Genesis and morphological characteristics of Mollisols formed in a catena under water table influence in southern Iran. Communication in Soil Science and Plant Analysis. 32: 1643-1658.
  2. Afshar-Harb, A. 1979. The stratigraphy, tectonics and petroleum geology of the Kopet-Dagh region, northern Iran. PhD Thesis, Imperial College of Sciences and Technology, University of London, 316 pp.
  3. Bhattacharyya, T., Pal, D.K., Deshpande, S.B. 1997. On kaolinitic and mixed mineralogy classes of shrink–swell soils. Australian Journal of Soil Research, 35: 1245–1252.
  4. Bahmaniar, M. A. 2002. Effect of parent material on clay mineralogy of some woodland area in Northern Iran. 17th world congress Soil Science, Bangkok, Thailand, August, 14-21.
  5. Biscaye, P. E. 1965. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans, Geological Society of America. Bulletin, 76: 803–832.
  6. Borchardt, G. 1989. Smectite. Pp 675-727 In; Minerals in Soil Environment (J.B. Dixon & S.B Weed,editors.) Soil Scince Society of America, Madison, Wisconsin, USA.
  7. Bronger, A., Bruhn-lobin, N. 1997. Paleopedology of terra rossa- RhodoXeralfs from Quaternary Calcarenites in new Morocco. Catena, 28: 279-295.
  8. Bronger, A., Ensling, J., Gutlich, P., Spiering, H., 1988. Rubification of terra rossa in Slovakia: a Mosbaaer effect study, Clays and Clay Minerals, 3: 269-275.
  9. Bullock, P., Federoff, N., Jongerius, A., Stoops, G., Tursina, T., Babel. 1985. Handbook for soil thin section Description. Wainer research Publication, Wolverhampton, U.K.
  10. Buol, S. W., Southard R. J., Graham, R. C. McDaniel, P. A. 2003. Soil Genesis and Classification. Fifth Edition. Iowa State Press.
  11. Burnett, A.D., Fookes, P.G., Robertson, R.H.S. 1972. An engineering soil at Kermanshah, Zagros Mountains, Iran. Clay Minerals, 9: 329-343.
  12. Cailleau, G., Verrecchia, E.P., Braissant, O., Emmanuel, L. 2009. The biogenic origin of needle fibre calcite. Sedimentology, 56: 1858–1875.
  13. Coulombe, C.E., Wilding, L.P., Dixon, J.B.1996. Overview of vertisols: characteristics and impacts on society. In: Sparks, D.L. (Ed.), Advances in Agronomy, vol. 57. Academic Press, New York, pp. 289–375.
  14. Day, R. R. 1965. Particle fractionation and particle size analysis, 545-566, In: C. A. Black Etal (Ed). Methods of soil analysis, part 1. Agronomy 9. American Society of Agronomy. Madison. Wisconsin, USA.
  15. Jaillard, B., Guyon, A., Maurin, A.F. 1991. Structure and composition of calcified roots, and their identification in calcareous soils. Geoderma, 50: 197–210.
  16. Johns, W.D., Grim, R.E., Bradley, W.F. 1954.  Quantitative estimation of clay minerals by diffraction methods. Journal of Sedimentary Petrology, 24: 242-251.
  17. Khormali, F., Amini, A., 2015. Clay mineralogy of the Jurassic-Tertiary sedimentary rocks of the Kopetdagh basin (Northeastern Iran): implication for paleocliomate.Acta Geodynamica et Geomaterialia, 12(4): 1-12
  18. Khormali, F., Abtahi, A., Stoops, G. 2006. Micromorphology of calcitic features in highly calcareous soils of Fars Province, Southern Iran. Geoderma, 132: 31–46
  19. Kittric, J., Hope, E. W. 1971. A precedure for particle size separations of soils for x-ray diffraction. Soil Science Society of American Proceeding, 35: 621-626.
  20. Mermut, A.R., Acton, D.F. Tarnocai, C. 1991. A review of recent research on swelling clay soils in Canada. In Kimble, J.M. (ed.), Characterization, Classification and Utilization of Cold Aridisols and Vertisols. USDA Soil Conservation Service, National Soil Survey Center, Lincoln, Nebraska, pp: 112–121.
  21. Milliere, L., Hasinger, O., Bindschedler, S., Cailleau, G, Spangenberg, J. E., Verrecchia. E.P. 2011. Stable carbon and oxygen isotope signatures of pedogenic needle fibre calcite. Geoderma, 161: 74–87.
  22. Moore, D. M., Reynolds, R. C. 1989. X-Ray Diffraction and the Identification and Analysis of Clay Minerals, 322 pp., Oxford Univercity. Press, New York.
  23. Moresi, M., Mongelli, G., 1988. The relation between the terra rossa and the carbonate-free residue of the underlying limestones and dolostones in Apulia, Italy. Clay Minerals,23: 439–446.
  24. Nael, M., Khademi, H., Jalalian, A., Sotohian, F. 2014. Soil-parent material relationship in forest ecosystems of western Alborz: Clay mineralogy. Journal of Water and Soil Conservation. Gorganunivercity of agricultural sciences and natural resources, 21(3): 101- 122.
  25. Nael, M., Jalalian, A., Khademi, H., Kalbasi, M., Sotoohian, F., Schulin, R. 2010. The effect of parent material and soil development on geochemical characteristics of forest soils in Fuman-Masule region. Journal Science and Technology of Agriculture and Natural Resoures. Water Soil Sci. Isfahan University of Technology, 54: 135-153.
  26. NoruziFard, F., Salehi, M.H., Khademi, H., DavoudianDehkordi, A.R. 2010. Genesis, classification and mineralogy of soils formed on various parent materials in the north of Chaharmahal-Va-Bakhtiari province. Jounal Water and Soil. Ferdowsi University of Mashhad, 24(4): 647-658.
  27. Nelson, R. E. 1982. Carbonate and Gypsum. In: Methods of soil analysis. Part 2. Page, A. L. (Ed). American society of Agronomy, Madison, Wisconsin, USA.
  28. Oganesyan, A. S. Susekova, N. G. 1995. Parent materials of Wrangel Island. Eurasian Soil Science,27: 20–35.
  29. Pal, D.K., Bhattacharyya, T., Chandran, P., Ray, S.K., Satyavathi, P.L.A., Durge, S.L., Raja, P., Maurya, U.K. 2009. Vertisols (cracking clay soils) in a climosequence of Peninsular India: evidence for Holocene climate changes. Quaternary International, 209: 6–21.
  30. Pal. D. K., Wani, S.P. Sahrawat, K.L. 2012. Vertisols of tropical Indian environments: Pedology and edaphology. Geoderma, 190: 28–49.
  31. Peng, Sh., Hao, Q., Oldfield, F., Guo, Zh. 2014. Release of iron from chlorite weathering and links to magnetic enhancement in Chinese loess deposits. Catena, 117: 43–49
  32. Plaster, R. W., Sherwood, W. C. 1971. Bedrock weathering and residual soil formation in central Virginia. Geological Society of America. Bulletin, 82: 2813–2826.
  33. Righi, D., Meunier, A. 1995. Origin of clays by rock weathering and soil formation, P 43-161. In: Velde, B. (ed.), Origin and Mineralogy of Clays, Springer, Berlin.
  34. Schaetzl, R. Anderson. S. 2005. Soils, Genesis and Geomorphology. Cambridge University Press.
  35. Shirsath, S.K., Bhattacharyya, T., Pal, D.K. 2000. Minimum threshold value of smectite for vertic properties. Australian Journal of Soil Research, 38: 189–201.
  36. Soil Survey Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18.
  37. Soil survey staff. 2014. Keys to soil taxonomy. U.S. Department of Agriculture, Natural Resources Conservation Service.
  38. Stephen, I. 1952. A study of rock weathering with reference to the soils of the Malvern Hills. I. Weathering of biotite and granite. European Journal of Soil Science. 3: 20–33.
  39. USDA Soil Survey Staff. 1972. Soil survey laboratory methods and procedure for collecting soil samples. Report No. 1.
  40. Verheye, W. 1974. Soils and soil evolution on limestones in the Mediterranean environment. Trans. 10th Internationalcongress of Soil Science. (Moscow) 6:387–393.
  41. Verrecchia, E.P. Verrecchia, K.E. 1994. Needle-fiber calcite: a critical review and a proposed classification Journal of Sedimentary Research, 64: 650–664.
  42. Walkly, A., Black. I. A. 1934. An examination of the digestion method for determination soil organic matter and a proposal modification of the chromic acid titration method. Soil Science, 37: 29-38p.
  43. Wild, M. R., Koppi. A. G., Mackenzie D. C., Mcbratney, A. B. 1992. The effect of tillage and gypsum application on the macropore structure of an Australian Vertisols used for irrigated cotton. Soil and Tillage Research, 22: 55-71.
  44. Zhao, L., Ji, J.F., Chen, J., Liu, L.W., Chen, Y., Balsam, W., 2005. Variations of illite/chlorite ratio in Chinese loess sections during the last glacial and interglacial cycle: Implications for monsoon reconstruction, Geophysical research letters, 32, L20718.