نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای فیزیک و حفاظت خاک، گروه علوم خاک، دانشکده مهندسی آب و خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

2 دانشیار، گروه علوم خاک، دانشکده مهندسی آب و خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

3 استادیار، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران.

4 استادیار پژوهش بخش تحقیقات زراعی و با غی مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی گلستان، سازمان تحقیقات، آموزش و ترویج کشاورزی. گرگان. ایران

چکیده

افزایش عملکرد و به دنبال آن افزایش غلظت عناصر پرمصرف و کم مصرف در گیاه یکی از جنبه­های مهم کشاورزی است. یکی از راهکارهای جدیدی که می­تواند در این زمینه مورد استفاده قرار گیرد استفاده از آب مغناطیسی است. آب مغناطیسی بواسطه عبور آب از یک میدان مغناطیسی بدست می­آید. بدین منظور آزمایشی در قالب فاکتوریل با دو تیمار اصلی اضافه کردن و اضافه نکردن کود پتاسیمی و روی و پنج تیمار فرعی (شدت­های مختلف میدان مغناطیسی شامل 4/0 سیم پیچ، 3/0 آهنربا، 3/0 سیم پیچ، 1/0 سیم­پیچ و تیمار شاهد) در چهار تکرار (40=n) در مزرعه تحقیقاتی دانشگاه علوم کشاورزی و منابع طبیعی گرگان صورت پذیرفت. نتایج نشان داد که تمام کرت­هایی که بوسیله آب مغناطیسی آبیاری شده بودند دارای بوته­های با ارتفاع بیشتر و همچنین عملکرد بیشتری بودند. همچنین بوته­هایی که بوسیله آب مغناطیسی آبیاری شده بودند دارای غلظت بالاتری (p <0.01) از روی و آهن در بلال خود بودند. در بین تیمارهای آب مغناطیسی، شدت 4/0 تسلا بیشترین تأثیر را بر عملکرد و ارتفاع ذرت و همچنین غلظت روی و آهن در بلال داشت (p <0.01). عملکرد ذرت در تیمارهای 4/0 سیم پیچ، 3/0 آهنربا، 3/0 سیم پیچ و 1/0 سیم پیچ که کود پتاسیمی و روی به آنها اضافه شده بود نسبت به تیمار شاهد افزایش نشان داد. این نتایج نشان می­دهد که راهکار مغناطیس نمودن آب می­تواند به عنوان یک گزینه مناسب برای افزایش غلظت عناصر غذایی،کمیت و کیفیت عملکرد ذرت علوفه­ای مورد استفاده قرار گیرد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

The effect of magnetic water on the yield of corn and the adsorption of potassium, zinc and iron

نویسندگان [English]

  • Hadi Habiby 1
  • Alireza Movahedi 2
  • Mojtaba Khoshravesh 3
  • Alireza Saberi 4

1 PhD student of Soil physics and conservation, Soil science department, Faculty of soil and water engineering, Gorgan university of agricultural science and natural resources, Gorgan, Iran.

2 Gorgan university of agricultural science and natural resource

3 Assistant Professor, Water engineering department, Faculty of Agriculture, Sari university of agricultural science and natural resources, Sari, Iran.

4 1. Assistant of Professors, Agronomy and Horticulture Department of Agricultural and Natural Recourses Research and education of Golestan, Agricultural Research, Education and Extension Organization, Gorgan, Iran

چکیده [English]

Introduction Increasing the yield and, consequently, increasing the concentration of macro and micro nutrients in the plant is one of the important aspects of agriculture. The improvement of the quality and quantity of some elements, such as potassium, zinc, and iron in the soil can cause an increase in the yield of the crop and the concentration of these elements in plant tissues. The increase in the concentration of these elements in plants can be effective in the health of livestock and consequently the health of humans. One of the new approaches that can be used in this field is the use of magnetic water. Magnetic water is obtained by passing water from a magnetic field. An  externally  applied magnetic field causes  changes  in  the atomic, molecular, and electronic structure of the treated water, such as changes to its solidifying and boiling points, viscosity and the dielectric  constant,  the  formation  of  clustering  structures from linear and ring hydrogen-bound chains of molecules, the magnetic interaction between these clustering structures, and  increasing the polarization effects of water molecules. The biological effects of magnetic field or electromagnetic field treatments depend on the strength and exposure period of water conditioning, in particular, the ion content, quality, and the volume of water.
Materials and Methods For this purpose, a field experiment was conducted in a factorial arrangement with two main treatments, adding and without adding potassium and zinc fertilizers, and five sub-treatments (magnetic field strengths, including a 0.4 Electromagnetic Coil (EC), 0.3 magnet, 0.3 EC, 0.1 EC, and the control treatment) in four replications at Research Station of Goran University of Agricultural and Natural Resources. The size of each experimental plot was 2 m × 2.5 m. Corn was planted in each plot with the distances of 15 cm from each other and rows with distances of 70 cm from each other. An electromagnetic coil and a permanent magnet were used to create a magnetic field. Water was passed from the middle of this magnetic field through a hose and the plots were irrigated with this magnetic water. The irrigation was conducted based on soil moisture content and continued until the harvest and drying of the plants. Soil and plant samples were taken at two flowering and harvesting stages and were transferred to the laboratory for analyzation. Concentrations of Zn and Fe in the soil and plant tissues were measured. Statistical analysis was performed using the SAS software.
Results and Discussion The results of this study showed that all the plots that were irrigated by magnetic water had corn plants with greater height and more yield was obtained than the control treatments. This could be due to the ease of absorbing water from the soil. Magnetic water has lower surface tension than untreated water, so the plant needs less force to absorb water from soil particles. Also, the plants that were irrigated by magnetic water had higher concentrations (P <0.01) of elements such as zinc and iron in their cobs. Magnetic water can increase the availability of the elements in the soil. So, more concentration of elements can be absorbed by the roots and transferred to the aerial parts of the plants. Among the magnetic water treatments, 0.4 Tesla strength treatment had the highest effect on the yield and corn height, as well as zinc and iron concentration in cobs (P <0.01). Higher strengths of the magnetic field (0.4 T) had more effect on the availability of elements in the soil and their absorption by the plants. The yield of corn in 0.4 EC, 0.3 M, 0.3 EC, and 0.1 EC treatments that potassium and zinc fertilizers were added to them increased as compared to the control. So, increasing the strength of the magnetic field had more effects on some soil properties. The treatments that K and Zn fertilizers were added to them had more yield than other treatments that these fertilizers were not added to them. This could be attributed to the fact that magnetic water has increased the solubility of K and Zn fertilizers. In fact, magnetic water has been able to increase the uptake of Zn from the soil. 
Conclusion These results indicate that the magnetization of water can be used as an appropriate approach to increase the quantity and quality of product yield and the concentration of the elements in the crops.

کلیدواژه‌ها [English]

  • Corn
  • Iron
  • Magnetic water
  • Potassium
  • Yield
  • Zinc
  1. Aladjadjiyan, A. 2002. Study of the influence of magnetic field on some biological characteristics of Zea mais. J. Cent. Eur. Agric., 3(20): 89–94.
  2. Amaya, J.M., Carbonell, M.V., Martinez, E., Raya, A. 1996. Effects of stationary magnetic fields on germination and growth of seeds. Hortic. Abst. 68, 1363.
  3. Amira MS, Hozayn M. 2010. Magnetic water technology, a novel tool to increase growth, yield and chemical constituents of lentil (Lens esculenta) under greenhouse condition. J. Agric. & Environ. Sci., 7(4): 457-462.
  4. Danilov, V., Bas., T., Eltez, M., Rizakulyeva, A. 1994. Artificial magnetic field effects on yield and quality of tomatoes. Acta Hortic. 366, 279–285.
  5. Esitken, A., Turan, M. 2004. Alternating magnetic field effects on yield and plant nutrient element composition of strawberry (Fragaria X ananassa cv. Camarosa). Acta Agric. Scand., Sect. B, Soil Plant Sci. 54, 135–139.
  6. Florez M, Victoria M, Martinez E. 2007. Exposure of maize seeds to stationary magneticfield: effects of germination and early growth. Environmental and experimental botany 59: 68-75.

 

  1. Grewal SH, Maheshwari, B.L. 2011. Magnetic treatment of irrigation water and snow pea and chickpea seeds enhances early growth and nutrient contents of seedlings. Bioelectromagnetics, 32 :( 1):58–65.
  2. Hilal MH, SM, Shata, Abdel-Dayem AA, Hillal MM. 2002: Application of magnetic technologies in desert agriculture. III- Effect of Magnetized Water on yield and uptake of certain elements by citrus in relation to nutrients mobilization in soil. Egypt J. Soil Sci. 42(1), 43-55.
  3. Hozayn, M., Abdul Qados, A.M.S. 2010. Irrigation with magnetized water enhances growth, chemical constituent and yield of chickpea (Cicer arietinum L.). Agric. Biol. J. North Am. 1, 671–676.
  4. Kahrizi D., Cheghamirza K., Akbari L., Rostami-Ahmadvandi H. 2013. Effects of magnetic field on cell dedifferentiation and callus induction derived from embryo culture in bread wheat (Triticum aestivum L.) genotypes. Mol. Biol. Rep. 40: 1651–1654.
  5. Kiani A.R. 2007. Magnetized water, new to increase water productivity. Zeiton scientific and specific monthly in agriculture, No 183:1-9. (in Persian).
  6. Khodabandeh, N. 1995. Cereals. Fourth edition. Tehran University publishing.
  7. Maheshwari, B.L., Grewal, H.S. 2009. Magnetic treatment of irrigation water: its effects on vegetable crop yield and water productivity. Agric. Water Manage. 96, 1229–1236.
  8. Mahmood S., Esman M. 2014. Consequences of magnetized water application on maize seed emergence in sand culture. J. Agr. Sci. Tech.16: 47–55.
  9. Moon JD Chung HS. 2000. Acceleration of germination of tomato seed by applying AC electric and magnetic fields. J Electrostatics 48:103–114.
  10. Mukheibir, P. 2008. Water resources management strategies for adaptation to climateinduced impacts in South Africa. Water Resources Management, 22:1259-1276.
  11. Pang X.F., Deng B. 2008. Investigation of changes in properties of water under the action of a magnetic field. Sci. China Ser. G: Phys. Mech. Astro.51: 1621–1632.
  12. Podleoeny, J., Pietruszewski, S., Podleoena, A., 2004. Efficiency of the magnetic treatment of broad bean seeds cultivated under experimental plot conditions. Int. Agrophys. 18, 65–71.
  13. Radhakrishnan R., Kumari B.D.R. 2013. Influence of pulsed magnetic field on soybean (Glycine maxL.) seed germination, seedling growth and soil microbial population. Indian J. Biochem. Biophys.50: 312–317.
  14. Sadeghi, H. 2010. Designing, constructing and evaluating of making magnetic water for agricultural use. MSc. Thesis, Faculty of agricultural biosystem engineering, Tehran University, 120 pp.
  15. Teixeira da Silva, J.A., Dobránszki, J. 2014. Impact of magnetic water on plant growth. Environ. Exp. Biol. 12, 137–142.
  16. Yokatani KT, Hashimoto H, Yanagisawa M, Nakamura T, Hasegawa K, Yamashita M . 2001. Growth of Avena seedlings under a low magnetic field. Biol. Sci. in Space 15: 258-259.