نوع مقاله : کاربردی
نویسندگان
1 دانشیار گروه مهندسی بیوسیستم، دانشگاه علوم کشاورزی و منابع طبیعی ساری
2 استادیار گروه مهندسی بیوسیستم، دانشگاه شهید چمران اهواز، اهواز، ایران
چکیده
پلتهای سوختی یکی از موارد استفاده از انرژی زیستتودهها میباشند که از پسماند کشاورزی، بقایای گیاهان و فضولات حیوانات ساخته شده و سبب تولید انرژی بیشتر در واحد حجم میشوند. عوامل مختلفی در فرآیند پلت سازی موثر هستند که شناخت آنها به بهینه سازی فرایند پلت سازی و شناخت مکانیزم فشردن و طراحی تجهیزات متراکم کننده کمک می کند. در این پژوهش، از یک دستگاه تک پلت ساز برای ساخت پلت هایی از پسماند کارخانه روغن کشی زیتون استفاده شد و تاثیر تیمارهای اندازه ذرات (600-900، 900-1200 و 1200-1500 میکرومتر)، فشار تراکم (75، 150 و 225 مگاپاسکال) و دما (50، 70 و 90 درجه سلسیوس) بر چگالی، مقاومت و پایداری پلت بررسی شد. نتایج نشان داد که اثرات اصلی هر سه تیمار مذکور بر مقاومت، چگالی و پایداری پلت معنی دار است. همچنین اثرات متقابل برخی تیمارها نیز بر این خصوصیات معنی دار است. بیشترین مقاومت پلت در ترکیب اندازه ذرات 900-1200 میکرومتر، دمای 90 درجه سلسیوس و فشار تراکم 225 مگاپاسکال بدست آمد. بیشترین چگالی در اندازه ذرات 600-900 و فشار تراکم 225 مگاپاسکال و بهترین پایداری در فشار تراکم 150 مگاپاسکال و دمای 90 درجه سلسیوس بدست آمد. بطور کلی خصوصیات فیزیکی و مکانیکی پلت تحت تاثیر هر سه عامل اندازه ذرات، دما و فشار تراکم قرار گرفت.
کلیدواژهها
موضوعات
عنوان مقاله [English]
Investigating factors affecting the density, strength and durability of pellets made from olive processing plant waste
نویسندگان [English]
- Reza Tabatabaeekoloor 1
- shaban ghavami jolandan 2
1 Associate Professor, Department of Biosystems Engineering, Sari Agricultural Sciences and Natural Resources University
2 Assistant professor, Department of Biosystems Engineering, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
چکیده [English]
Introduction: Fuel pellets are one of the uses of biomass, which are made from agricultural waste, plant residue, and animal excrement. They produce more energy per unit volume. Various factors are effective in the pelleting process. Having information about them helps to optimize the pelleting process and to understand the compression mechanism and the design of compacting equipment.
Materials and Methods: Olive pomace raw material for making pellets was obtained from an olive processing factory in Rudbar city in Gilan province. The prepared materials were transferred to the laboratory in the necessary amount in nylon bags and dried in the oven at 105 degrees Celsius for 24 hours. The dried samples were powdered by a laboratory grinder and then passed through sieves in the range of 0.6-1.5 mm and used to make pellets. Before making pellets, the initial moisture content of the samples was obtained using the drying method. First, pre-tests were conducted to make pellets and the moldability and strength of the samples were checked. A palletization mechanism was used to compress the pellet. This system was designed and built in biosystem mechanics of Sari University of Agricultural Sciences and Natural Resources. The material was placed inside a steel mold with a cylinder inner diameter of 8.05 mm and a height of 150 mm with a blocked end. A piston with a diameter of 8 mm connected to the driving arm of the tension-compression test machine was used to compress the material. Loading by a piston with a quasi-static speed of 6 mm per minute is compressed. In this research, the effect of particle size treatments (600-900, 900-1200 and 1200-1500 μm), compaction pressure (75, 150 and 225 MPa) and temperature (50, 70 and 90 ͦC) on the density, strength and durability of the pellet were investigated.
Results and Discussion: The results indicated that the main effects of all three mentioned treatments on the strength, density and durability of the pellet are significant. Also, the mutual effects of some treatments are also significant on these characteristics. The interaction effect of particle size and compaction pressure on pellet compressive strength is significant at 5% level. With the increase in particle size, the pellet strength increased first, and then with the further increase in particle size, the pellet strength decreased slightly. On the other hand, with the increase in compression pressure, the pellet resistance increased. Pellet density is an important factor for storage and transportation as well as combustion efficiency. The mutual effect of compression pressure and particle size on pellet density is significant. Changes in pellet density were obtained in the range of 1.015 to 1.350 grams per cubic centimeter. The usual and recommended density for pellets made from agricultural and forest residues should be more than 0.8 grams per cubic centimeter. The interaction effect of compaction pressure and temperature on pellet durability is significant. The range of durability changes for pellets is between 81 and 95 percent. Increasing compaction pressure significantly improved the stability of the pellets, which indicates the role of compaction in bonding between particles and creating bridges for greater particle strength. The highest pellet strength was obtained in the combination of particle size of 900-1200 micrometers, temperature of 90 degrees Celsius and compaction pressure of 225 MPa. The highest density was obtained at a particle size of 600-900 and a compression pressure of 225 MPa and the best stability at a compression pressure of 150 MPa and a temperature of 90 degrees Celsius. In general, the physical and mechanical properties of the pellet were affected by all three factors: particle size, temperature and compaction pressure.
Conclusion: The results of this research showed that all three factors of particle size, compaction pressure and temperature have a significant effect on the physical and mechanical properties of pellets such as density, strength and durability. Choosing the right particle size plays an important role in making the pellet stronger. The temperature of the die during pelleting is also very important in the bonding of the pellet particles because at the right temperature, the bonding between the bridges strengthens the connection of the particles and as a result increases the strength and durability of the pellet. In general, the results of the research showed that to make pellets from olive processing factory waste, a suitable combination of particle size parameters, compaction pressure and die temperature is needed to make pellets with high strength and durability.
کلیدواژهها [English]
- Olive biomass
- density
- pressure strength
- durability
- pellet
1. Abdollahpour, A. R., Tabatabaeekoloor, R., and Hashemi, S. J. 2023. Evaluation of Fuel Pellets Made from the Combination of Spruce Sawdust with Corn and Soybean Biomass. Agricultural Engineering (Scientific Journal of Agriculture), 46 (3): 273-288. DOI: 10.22055/AGEN.2023.45376.1692. (In Persian)
2. Adapa, P., Tabil, L., and Shoenau, G. 2009. Comparison characteristics of barley, canola and wheat straw. Biosystems Engineering, 104, 335-344. https://doi.org/10.1016/j.biosystemseng.2009.06.022
3. Carone, M.T., Pantaleo, A., and Pellerano, A. 2011. Influence of process parameters and biomass characteristics on the durability of pellets from the pruning residues of Olea europaea L. Biomass and Bioenergy, 35(1): 402-410. https://doi.org/10.1016/j.biombioe.2010.08.052
4. FAO. 2020. Food and Agricultural Organization. Agricultural statistics. Data report
5. Garcia, R., Gil, M.V., Rubiera, F., and Pevida, C. 2019. Pelletization of wood and alternative biomass blends for producing industrial quality pellets. Fuel, 251: 739-753. https://doi.org/10.1016/j.fuel.2019.03.141
6. Harun, N.Y., and Afzal, M.T. 2016. Effect of particle size on mechanical properties of pellets made from biomass blends. Procedia Engineering, 148, 93-99. https://doi.org/10.1016/j.proeng.2016.06.445
7. Ishii, K., and Furuichi, T. 2014. Influence of moisture content, particle size and forming temperature on productivity and quality of rice straw pellets. Waste Management, 34, 2621-2626. https://doi.org/10.1016/j.wasman.2014.08.008
8. Jamradloedluk, J., and Lertsatitthanakorn, C. 2017. Influence of mixing ratios and binder types on properties of biomass pellets. Energy Procida, 138, 1147-1152. https://doi.org/10.1016/j.egypro.2017.10.223
9. Jiang, L., Liang, J., Yuan, X., Li, H., Li, C., Xiao, Z., Huang, H., Wang, H. and Zheng, G. 2014. Co-pelletization of sewage sludge and biomass: the density and hardness of pellet. Bioresource Technology, 166, 435-443. https://doi.org/10.1016/j.biortech.2014.05.077
10. Kaliyan, N., and Morey, R.V. 2010. Natural binders and solid bridge type binding mechanisms in briquettes and pellets made from corn Stover and switch grass. Bioresource Technology, 101(3), 1082-1090. https://doi.org/10.1016/j.biortech.2009.08.064
11. Lang, S., Zhang, S., Cao, Z., Yang J., Zhou, Y., Liu, S., Xu, J., and Yang, C. 2023. Improvement of biochar pellets prepared from cotton stalk by hydrothermal pretreatment. Journal of Analytical and Applied Pyrolysis. Vol. 176: https:// doi.org/101016/j.Jaap.2023.106263
12. Lehtikangas, P. 2001. Quality properties of pelletized sawdust, lodging residue and bark. Biomass and Bioenergy, 20(5), 351-360. https://doi.org/10.1016/S0961-9534(00)00092-1
13. Li, Y. and Liu, H. 2000. High pressure densification of wood residues to form an upgraded fuel. Biomass and Bioenergy, 19(3), 177-186. https://doi.org/10.1016/S0961-9534(00)00026-X
14. Liu, Zh., Quek, A., and Balasubramanian, R. 2014. Preparation and characterization of fuel pellets from woody biomass, agro-residue and their corresponding hydrochars. Applied Energy, 113, 1315-1322. https://doi.org/10.1016/j.apenergy.2013.08.087
15. Mišljenović, N., Mosbye, J., Schüller, R. B., Lekang, O.-I., and Salas-Bringas, C. 2015. Physical quality and surface hydration properties of wood based pellets blended with waste vegetable oil. Fuel Processing Technology 134: 214-222. https://doi.org/10.1016/j.fuproc.2015.01.037
16. Molina-Moreno, V., Leyva-Díaz, J. C., and Sánchez-Molina, J. 2016. Pellet as a technological nutrient within the circular economy model: Comparative analysis of combustion efficiency and CO and NOx emissions for pellets from olive and almond trees. Energies 9(10), 777. https://doi.org/10.3390/en9100777
17. Nguyen, Q. N., Cloutier, A., Achim, A., and Stevanovic, T. 2015. Effect of process parameters and raw material characteristics on physical and mechanical properties of wood pellets made from sugar maple particles. Biomass and bioenergy 80: 338-349. https://doi.org/10.1016/j.biombioe.2015.06.010
18. Niedziółka, I., Szpryngiel, M., Kachel-Jakubowska, M., Kraszkiewicz, A., Zawiślak, K., Sobczak, P., and Nadulski, R. 2015. Assessment of the energetic and mechanical properties of pellets produced from agricultural biomass. Renewable Energy 76: 312-317. https://doi.org/10.1016/j.renene.2014.11.040
19. Pradhan, P., Mahajani, S. M., and Arora, A. 2018. Production and utilization of fuel pellets from biomass: A review. Fuel Processing Technology, 181, 215-232. https://doi.org/10.1016/j.fuproc.2018.09.021
20. Puig-Arnavat, M., Shang, L., Sárossy, Z., Ahrenfeldt, J., and Henriksen, U.B. 2016. From a single pellet press to a bench scale pellet mill—Pelletizing six different biomass feedstock. Fuel Processing Technology, 142, 27-33. https://doi.org/10.1016/j.fuproc.2015.09.022
21. Rhen, C., Gref, R., Sjöström, M., and Wasterlund, I. 2005. Effects of raw material moisture content, densification pressure and temperature on some properties of Norway spruce pellets. Fuel Processing Technology, 87(1), 11-16. https://doi.org/10.1016/j.fuproc.2005.03.003
22. Said, N., Abdel daiem, M.M., Garcia-Maraver, A., and Zamorano, M. 2015. Influence of densification parameters on quality properties for rice straw pellets. Fuel Processing Technology. 138, 56-65. https://doi.org/10.1016/j.fuproc.2015.05.011
23. Serrano, C., Monedero, E., Lapaerta, M., and Portero, H. 2011. Effect of moisture content, particle size and 23. Pine added on quality parameters of barley straw pellets. Fuel Processing Technology, 92(3), 699-706. https://doi.org/10.1016/j.fuproc.2010.11.031
24. Stasiak, M., Molenda, M., Bańda, M., Wiącek, J., Parafiniuk, P., and Gondek, E. 2017. Mechanical and combustion properties of sawdust—Straw pellets blended in different proportions. Fuel Processing Technology, 156, 366-375. https://doi.org/10.1016/j.fuproc.2016.09.021
25. Stelte, W., Holm, J. K., Sanadi, A. R., Barsberg, s., Ahrenfeldt, j., and Henriksen, U. B. 2011. Fuel pellets from biomass: The importance of the pelletizing pressure and its dependency on the processing conditions. Fuel 90(11): 3285-3290. https://doi.org/10.1016/j.fuel.2011.05.011
26. Sykorova, V., Jezerska, L., Sassmanova, V., Honus, S., Peikertova, P., Kielar, J., and Zidek, M. 2024. Biomass pellets with organic binders-before and after Torre faction. Renewable Energy, Vol. 221. https:// doi.org/ 101016/ J. renewe.2023.119771.
27. Tabatabaei, R., Motevali, A., Hadipour, R., and Mavadati, S. 2020. Effect of Temperature, Compression Force and Mixing Ratio of Materials on the Mechanical Properties of Pellets Made from Rice Bran and Sugarcane Molasses. Iranian Journal of Biosystems Engineering, 51, 551-561. https://doi.org/10.22059/ijbse.2020.267118.665104. (In Persian)
28. Temmerman, M., Rabier, F., Jensen, P.D., Hartmann, H., and Böhm, T. 2006. Comparative study of durability test methods for pellets and briquettes. Biomass and Bioenergy 30(11): 964-972. https://doi.org/10.1016/j.biombioe.2006.06.008
29. Tsuchiya, Y., and Yoshida, T. 2017. Pelletization of brown coal and rice bran in Indonesia: Characteristics of the mixture pellets including safety during transportation. Fuel Processing Technology, 156, 68-71. https://doi.org/10.1016/j.fuproc.2016.10.009
30. Wu, M.R., Scholt, D.L., and Lodewijks, G. 2011. Physical properties of solid biomass. Biomass and Bioenergy, 35(5), 2093-2105. https://doi.org/10.1016/j.biombioe.2011.02.020
31. Zhang, C., Chen, W.-h., Ho, S.-H., Park, Y.-K., Wang, C., and Zheng, Y. 2023. Pelletization property analyses of raw and torrefied corn stalks for industrial applications to achieve agricultural waste conservation. Energy, 285, https:// doi.org/10.1016/ J.energy.2023.129463