نوع مقاله : کاربردی
نویسندگان
1 دانش آموخته کارشناسی ارشد، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه کردستان، سنندج، ایران
2 دانشیار، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه کردستان، سنندج، ایران
چکیده
کرچک یکی از مهمترین گیاهان دارویی خانواده فرفیون و از قدیمیترین گونههای شناخته شده توسط بشر است.کوددهی بخش مهمی از مدیریت کشت کرچک است؛ با این حال اطلاعات اندکی در مورد تأثیر کوددهی بر رشد گیاه کرچک در دسترس است. کاربرد کودهای آلی و زیستی پیامدهای مثبتی بر حاصلخیزی خاک و عملکرد کمی و کیفی گیاهان دارد. بنابراین بهمنظور بررسی ویژگیهای مورفولوژیک، عملکرد دانه و روغن کرچک تحت تأثیر تیمارهای مختلف کودی، آزمایشی در مزرعه تحقیقاتی دانشکده کشاورزی دانشگاه کردستان در سال 1401 اجرا شد. آزمایش بهصورت فاکتوریل در قالب طرح بلوکهای کامل تصادفی با سه تکرار انجام شد. فاکتور اول شامل تیمارهای مختلف کودی شاهد، کود آلی کامل گرانوله (800 کیلوگرم در هکتار)، بیوچار (3000 کیلوگرم در هکتار)، ، سرکه چوب (90 لیتر در هکتار)، و کود شیمیایی (اوره 200کیلوگرم در هکتار و سوپرفسفات تریپل 100 کیلوگرم در هکتار)، و فاکتور دوم شامل قارچ میکوریزا Rhizophagus irregularis)) در دو سطح (مایهزنی و عدم مایهزنی) بود. نتایج نشان داد اثر متقابل تیمارهای کودی و قارچ میکوریزا سبب بهبود ویژگیهای کمی و کیفی کرچک گردید. بیشترین عملکرد بیولوژیک (2/3650 گرم بر مترمربع)، درصد روغن (5/50 درصد) و عملکرد روغن (3/588 کیلوگرم در هکتار) در تیمار تلفیقی کود آلی و مایهزنی با میکوریزا مشاهده شد.کود آلی و بیوچار اثر مثبتی بر ویژگیهای مورفولوژیک داشتند. بیشترین غلظت نیتروژن و پتاسیم دانه نیز مربوط به تیمار کود آلی بود. با توجه به نتایج تحقیق حاضر، تیمار کود آلی توأم با مایهزنی میکوریزا در مقایسه با شاهد و تیمارهای دیگر بر بیشتر صفات مورد مطالعه اثرات مثبت معنیداری نشان داد. کاربرد تلفیقی میکوریزا و سایر کودهای آلی، علاوه بر بهبود ویژگیهای کمی و کیفی کرچک، میتواند با کاهش مصرف کودهای شیمیایی، راهکاری کلیدی در کشاورزی پایدار باشد.
کلیدواژهها
موضوعات
عنوان مقاله [English]
Improving the nutritional management and yield of Ricinus communis L. using Arbuscular mycorrhizal fungus and organic fertilizers
نویسندگان [English]
- Hadi Ahmadian 1
- Shiva Khalesro 2
- Gholamreza Heidari 2
1 MS.c. graduate, Department of Plant Production and Genetics, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
2 Associate Professor, Department of Plant Production and Genetics, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran.
چکیده [English]
Introduction: A decline in soil organic matter is a key facet of soil degradation, leading to the loss of soil fertility and the capacity to produce crops. The intensive use of synthetic inorganic inputs, such as chemical fertilizers, has resulted in soil organic matter depletion, groundwater contamination, air pollution, and reduced production quality in arid and semi-arid regions. Therefore, sustainable techniques, such as organic fertilizers and natural inputs, are becoming increasingly important to enhance soil organic matter and plant yield in sustainable agricultural systems. The use of organic fertilizers and soil amendment like biochar and wood vinegar can significantly improve soil organic matter. Much of the world's interest in biochar stems from the worsening condition of agricultural soils and the depletion of water resources. Additionally, biochar has attracted researchers’ interest mainly due to its long-term soil carbon sequestration potential, role in greenhouse gas mitigation, phytoremediation, and ability to improve soil fertility. Biochar and wood vinegar can be made from various biomass materials/residues such as wood waste, crop and refinery residues, animal manures, and municipal wastes. Biofertilizers also play a vital role in sustainable agriculture systems. Mycorrhiza is one of the most important biofertilizers. Mycorrhizal associations help plants obtain water and nutrients in dry and nutrient-poor conditions by increasing the root surface area for water and nutrient uptake. Castor bean (Ricinus commonis L.) is a valuable annual herb belonging to the Euphorbiaceae family. It is an important oilseed crop widely used in industry and medicine today. Numerous studies have underlined the beneficial effects of organic fertilizers on soil fertility and crop yield. However, no study has evaluated the impact of organic fertilizer, biochar, wood vinegar, and mycorrhiza on Ricinus commonis L. This research aims to discover the main effects and interactions of these treatments on the quantitative and qualitative traits of Ricinus commonis L.
Materials and Methods: The field experiment was conducted at the Research Field at the University of Kurdistan (35° 19' N, 47° 18' E) during 2022 growing season. The research was designed as a factorial experiment using a randomized complete block design with three replications. Treatment included five fertilizer types: control, organic fertilizer (800 kg ha-1), biochar (3000 kg ha-1), wood vinegar (90 kg ha-1) and chemical fertilizer (urea 200 kg ha-1, and TSP 100 kg ha-1). Additionally, two mycorrhiza levels (Rhizophagus irregularis) were tested: no-inoculation and inoculation. Each experimental plot consisted of six rows, each 6 meters long and spaced 75 cm apart. The seeds were sown on 10 May 2020. Agronomic traits such as plant height, number of capsules per plant, and 1000-seed weight were randomly measured from five plants at full maturity in each plot. In the center rows of each plot, 2.25 m2 of area was harvested at the end of each growing season to evaluate biological and seed yield. Other studied traits included harvest index, seed oil content, seed oil yield, and the nitrogen, phosphorous, and potassium concentration of the seeds.
Results and Discussion: The results showed that the effect of mycorrhiza inoculation on the plant height, capsules number per plant, seed number per plant, and 1000-seed weight was significant. Furthermore, the fertilizer impact on the mentioned traits except of 1000-seed weight was significant. Organic fertilizer, biochar, wood vinegar, and chemical fertilizer significantly increased the capsules number per plant. The highest number of capsules per plant and seed number per plant belonged to the organic fertilizer. Mycorrhiza inoculation enhanced the seed number per plant and 1000-seed weight by 16% and 23% compared to control, respectively. the interaction effects of different fertilizers and mycorrhiza inoculation improved the quantitative and qualitative traits of castor bean. The highest biological yield (3650.2 g/m2), seed oil content (50.5 %), and oil yield (588.3 g/m2) were observed in the integrated treatment of organic fertilizer and mycorrhiza inoculation. This treatment increased seed and biological yield by 36.5% and 24% compared to control, respectively. Mycorrhiza can enhance plant growth and yield by increasing the supply of phosphorus to the host plant. Mycorrhizal plants can absorb and accumulate several times more phosphate from the soil or solution than non-mycorrhizal plants. Organic fertilizer and biochar positively affected the morphological characteristics. Biochar reduces water consumption and improves soil properties under drought conditions. Compared to other amendment materials, biochar has the benefit of a large surface area and pore spaces, allowing it to absorb and retain water. The highest seed nitrogen and potassium content was observed in the organic fertilizer treatment. Organic fertilizers may promote root development by retaining more water and nutrients in the soil, secreting more plant hormones, and increasing the amount of inorganic material such as nitrogen, phosphorus, and potassium that plants can absorb.
Conclusion: Therefore, it can be said that the integrated application of organic and biofertilizers not only improve the quantitative and qualitative traits of Ricinus commonis L. but also could be a key strategy in sustainable agricultural systems by reducing the consumption of chemical fertilizers.
کلیدواژهها [English]
- Biochar
- Chemical fertilizer
- Mycorrhiza
- Oil yield
- Sustainable agriculture
- Wood vinegar
1. Adeyemi, N. O., Atayese, M. O., Sakariyawo, O. S., Azeez, J. O., Olubode, A. A., Ridwan, M., and Ibrahim, I. 2021. Influence of different arbuscular mycorrhizal fungi isolates in enhancing growth, phosphorus uptake and grain yield of soybean in a phosphorus deficient soil under field conditions. Communications in Soil Science and Plant Analysis, 52(10): 1171-1183. https://doi.org/10.1080/00103624.2021.1879117
2. Amiri, M.B., and Esmaeilian, Y. 2021. Effect of humic acid spraying and different levels of spend mushroom compost (SMC) on morphological characteristics and yield of castor bean (Ricinus communis L.). Agricultural Science and Sustainable Production, 31(3): 249-270. https://doi.org/10.22034/saps.2021.39424.2477 (In Persian)
3. Botha, C.R., and Webb, M.M. 1952. The versenate method for the determination of calcium and magnesium in mineralized waters containing large concentration of interfering ions. Journal of Institute of Water Engineers, 6: 11-22.
4. Bouyoucos, G.J. 1962. Hydrometer method improved for making partical sis analysis of soils. Agronomy Journal, 54: 464-465. https://doi.org/10.2134/agronj1962.00021962005400050028x
5. Bremner J.M., and Mulvaney C.S. 1982. Nitrogen-Total. In: Al P, Keeney DR, Baker DE, Miller RH, editors. Methods of soil analysis. Part 2. Chemical and microbiological properties. 2nd edn. Madison, Wisconsin: SSSA, ASA. p. 594–624, https://doi.org/10.2134/agronmonogr9.2.2ed
6. Covacevich, F., and Echeverria, H.E. 2008. Receptivity of an Argentinean pampas soil to arbuscular mycorrhizal Glomus and Acaulospora strain. World Journal of Agricultural Sciences, 4: 688-698.
7. Darzi, M.T., Ghalavand, A., and Rejali, F. 2008. Effect of mycorrhiza, vermicompost and phosphate biofertilizer application on flowering, biological yield and root colonization in fennel (Foeniculum vulgare Mill.). Iranian Journal of Crops Sciences, 10: 88-109. 20.1001.1.15625540.1387.10.1.7.0 (In Persian)
8. Diaz-Urbano, M., Goicoechea, N., Velasco, P., and Poveda, J. 2023. Development of agricultural bioinoculants based on mycorrhizal fungi and endophytic filamentous fungi: co-inoculants for improve plant-physiological responses in sustainable agriculture. Biological Control, 182(105223), 1-21. https://doi.org/10.1016/j.biocontrol.2023.105223
9. Erfani, R., Yaghoubian, Y., and Pirdashti, H. 2020. The contribution of chemical, organic and bio-fertilizers on rice production in Iran: A meta-analysis. Russian Agricultural Sciences. 46(6): 596-601. https://doi.org/10.3103/S1068367420060130
10. FAOSATE .2021. Food and Agriculture Organization of the United Nations, FAO database.
11. Ghazanshahi, J. 2019. Plant & Soil Analysis. Aeizh Publication. pp: 292. (In Persian)
12. Gholami Sharafkhane, E., Jahan, M., Banayan Avval, M., Koocheki, A., and Rezvani moghaddam, P. 2015. The effect of organic, biological and chemical fertilizers on yield, essential oil percentage and some agroecological characteristics of summer savory (Satureja hortensis L.) under Mashhad conditions. Journal of Agroecology, 7(2): 179-189. https://doi.org/10.22067/jag.v7i2.50231(In Persian)
13. Glaser, B., Lehmann, J., and Zech, W. 2002. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal- a review. Biology and Fertility of Soils, 35: 219-230. https://doi.org/10.1007/s00374-002-0466-4
14. Gryndler, M., Larsen, J., Hrselova, H., Rezacova, V., Gryndlerova, H., and Kubat, J. 2006. Organic and mineral fertilization, respectively, increase and decrease the development of external mycelium of arbuscular mycorrhizal fungi in a long-term field experiment. Mycorrhiza, 16: 159–166. https://doi.org/10.1007/s00572-005-0027-4
15. Gupta, D. K., Rai, U. N., Tripathi, R. D., and Inouhe, M. 2002. Impacts of fly-ash on soil and plant responses. Journal of Plant Research, 115: 401–409. https://doi.org/10.1007/s10265-002-0057-3
16. Hazrati, S., Sadeghi-Bakhtvari, A.R., Kiani, D., and Zeinali, A. 2020. The effect of organic, biofertilizer, and chemical fertilizer on growth and yield of castor bean (Ricinus communis L.). Journal of Plant Production Research, 27(2): 131-152. https://doi.org/10.22069/jopp.2020.16303.2481(In Persian)
17. Hazzoumi, Z., Moustkime, Y., Elharchli, E., and Amranijoutei, K. 2015. Effect of arbuscular mycorrhizal fungi (AMF) and water stress on growth, phenolic compounds, glandular hairs, and yield of essential oil in basil (Ocimum gratissimum L.). Chemical and Biological Technologies in Agriculture, 2: 10. https://doi.org/10.1186/s40538-015-0035-3
18. Heydar, L., Bayat, H.W., and Hamzeh, J. 2020. Short-term effects of biofertilizer application on some physical and chemical properties of soil. Journal of Water and Soil Conservation, 27(1): 71-89. https://doi.org/10.22069/jwsc.2020.16986.3238 (In Persian)
19. Jalilia, J., Modarres-Sanavy, S.A.M., Saberali, S.F., and Sadat-Asilan, K. 2012. Effects of the combination of beneficial microbes and nitrogen on sunflower seed yields and seed quality traits under different irrigation regimes. Field Crops Research, 127: 26–34. https://doi.org/10.1016/j.fcr.2011.11.001
20. Kapoor, R., Giri, B., and Mukerji, K.G. 2004. Improved growth and essential oil yield and quality in Foeniculum vulgare Mill. on mycorrhizal inoculation supplemented with P-fertilizer. Bioresource Technology, 93: 307-311. https://doi.org/10.1016/j.biortech.2003.10.028
21. Khorramdel, S. 2008. Application effects of biofertilizers nitrogen and phosphor on the quality
characteristics of black cumin (Nigella sativa L.). M.Sc. Thesis, Fac. Agriculture. Ferdowsi University of Mashhad, Iran. (In Persian)
22. Khorramdel, S., Koocheki, A., Nassiri Mahallati, M., and Ghorbani, R. 2010. Application effects of nitrogen and phosphorous biofertilizers on the growth indices of black cumin (Nigella sativa L.). Iranian Journal of Field Crops Research, 6 (2): 285-294. https://doi.org/10.22067/gsc.v6i2.2435 (In Persian)
23. Kumar, M., Ahmad, S., and Singh, R.P. 2022. Plant growth promoting microbes: Diverse roles for sustainable and ecofriendly agriculture. Energy Nexus, 7(100133), 1-11 https://doi.org/10.1016/j.nexus.2022.100133
24. Lindsay, W., and Norvell, W. A. 1978. Development of a DTPA test for zinc, iron, manganese and copper. Soil Science Society of American Journal, 42: 421-428. https://doi.org/10.2136/sssaj1978.03615995004200030009x
25. Luque-Garcıa, J.L. and Luque de Castro, M.D. 2004. Ultrasound-assisted Soxhlet extraction: an expositive approach for solid sample treatment Application to the extraction of total fat from oleaginous seeds. Journal of Chromatography A, 1034: 237-242. https://doi.org/10.1016/j.chroma.2004.02.020
26. Mazaherinia, S., Astaraei, A., Fotovat, A., and Monshi, A. 2011. Effect of iron oxides (ordinary and nano) and municipal solid waste compost (MSWC) coated sulfur on wheat (Triticum aestivum L.) plant iron concentration and growth. Iranian Journal of Field Crops Research, 8(5): 855-861. https://doi.org/10.22067/gsc.v8i5.8029 (In Persian)
27. Moradi, S. 2015. Impact of sheep manure, urea and triple superphosphate on onion morphological properties. International Journal of Farming and Allied Sciences, 4(2): 167-170.
28. Moradi, R., Rezvani Moghaddam, P., Nasiri Mahallati, M., and Lakzian, A. 2009. The effect of application of organic and biological fertilizers on yield, yield components and essential oil of Foeniculum vulgare (Fennel). Iranian Journal of Field Crops Research, 7: 625-635. 20.1001.1.20081472.1388.7.2.29.9 (In Persian)
29. Mungkunkamchao, T., Kesmala, T., Pimratch, S., Toomsan, B., and Jothityangkoon, D. 2013. Wood vinegar and fermented bioextracts: natural products to enhance growth and yield of tomato (Solanum lycopersicum L.). Scientia Horticulturae, 154: 66-72. https://doi.org/10.1016/j.scienta.2013.02.020
30. Murphy, J., and Riley, J.P. 1962. A modified single solution method for the determination of phosphate in natural waters. Analityca Chimica Acta, 27:31–36. https://doi.org/10.1016/S0003-2670(00)88444-5
31. Naiji, M., and Souri, M. 2015. Evaluation of growth and yield of savory (Satureja hortensis) under organic and biological fertilizers toward organic production. Journal of Plant Productions Agronomy, Breeding and Horticulture, 38 (3): 93-103. https://doi.org/10.22055/ppd.2015.11456
32. Nieder, R., and Benbi, D. 2021. Reactive nitrogen compounds and their influence on human health: an overview. Reviews on Environmental Health, 37(2): 229–246. DOI: https://doi.org/10.1515/reveh-2021-0021
33. Paradi, I., Bratek, Z., and Lang, F. 2003. Influence of arbuscular mycorrhiza and phosphorus supply on polymine content, growth and photosynthesis of Plantago anceolata. Biologia Plantarum, 46: 563-569. https://doi.org/10.1023/A:1024819729317
34. Qiu, Q., Bender, S.F., Mgelwa, A S., and Hu, Y. 2022. Arbuscular mycorrhizal fungi mitigate soil nitrogen and phosphorus losses: A meta-analysis. Science of the Total Environment, 807(150857), 1- 11. https://doi.org/10.1016/j.scitotenv.2021.150857
35. Rahbari, A., Massoud Sinki, J., Damavandi, A., and Rezvan, S. 2019. Reflux of castor oil (Ricinns communis L.) to foliar application of nano-chelate on humic acid under restricted irrigation conditions. Agricultural Science and Sustainable Production, 29(2): 153-171. (In Persian)
36. Rahimi, A., Amirnia, R., Siavash Moghaddam, S., El Enshasy, H. A., Hanapi, S. Z., and Sayyed, R. Z. 2021. Effect of different biological and organic fertilizer sources on the quantitative and qualitative traits of Cephalaria syriaca. Horticulturae, 7: 397-405. https://doi.org/10.3390/horticulturae7100397
37. Saeid Nejad, A., and Rezvani Moghaddam, P. 2010. Evaluate the effect of compost, vermicompost and manure on yield, yield components and essential oil of cumin (Cuminum ciminum L.). Journal of Horticultural Science, 24(2): 142-148. https://doi.org/10.22067/jhorts4.v1389i2.7987 (In Persian)
38. Shata, S.M., Mahmoud, A., and Siam, S. 2007. Improving calcareous soil productivity by integrated effect of intercropping and fertilizer. Reacerch Journal of Agriculture and Biological Science, 3: 733-739.
39. Taghizadeh, M., Azimi Senejani, Z,m and Solgi, M. 2023. Improving of Zamioculcas zamifolia vegetative propogation by arbuscular mycorrhiza biofertilizer and biochar application. Agricultural Engineering, 46(2): 195-214. https://doi.org/10.22055/agen.2023.44719.1681 (In Persian)
40. Tanure, M. M. C., da Costa, L.M., Huiz, H. A., Fernandes, R.B.A., Cecon, P. R., Junior, J. D. P., and da Luz, J.M.R. 2019. Soil water retention, physiological characteristics, and growth of maize plants in response to biochar application to soil. Soil and Tillage Research, 192: 164-173. https://doi.org/10.1016/j.still.2019.05.007
41. Vaccari, F.P., Baronti, S., Lugato, E., Genesio, L., Castaldi, S., Fornasier, F., and Miglietta, F. 2011. Biochar as a strategy to sequester carbon and increase yield in durum wheat. European Journal of Agronomy, 34: 231-238. https://doi.org/10.1016/j.eja.2011.01.006
42. Walkley, A., and Black, I.A. 1934. An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 38-40.
43. Yasari, E., Azadgoleh, M. A., Mozafari, S., and Alashti, M. 2009. Enhancement of growth and nutrient uptake of rapeseed (Brassica napus L.) by applying mineral nutrients and biofertilizers. Pakistan Journal of Biological Science, 15: 12(2): 27-33. DOI: https://doi.org/10.3923/pjbs.2009.127.133
44. Yeilaghi, H., Arzani, M, Ghaderian, R, Fotovat, M., and Feizi, S. S. 2012. Effect of salinity on seed oil content and fatty acid composition of safflower (Carthamus tinctorius L.) genotypes. Food Chemistry, 130: 618-625. https://doi.org/10.1016/j.foodchem.2011.07.085
45. Yusuf, A., Mamza, P., Ahmed, A., and Agunwa, U. 2015. Extraction and characterization of castor seed oil from wild Ricinus communis Linn. International Journal of Science Environment and Technology,
4(5): 1392-1404.
46. Zambon, I., Colantoni, A., Carlucci, M., Morrow, N., Sateriano, A., Salvati, L., et al. 2017. Land quality, sustainable development and environmental degradation in agricultural districts: a computational approach based on entropy indexes. Environmental Impact Assessment Review, 64: 37–46. https://doi.org/10.1016/j.eiar.2017.01.003
47. Zeinali, A., Sadeghi Bakhtvari, A., and Sarabi, V. 2017. Investigation of nitrogen and Sulphur effects on quantitative and qualitative characteristics of castor bean seed (Ricinus communis L.). Iranian Journal of Field Crops Science, 49: 1. 29-43. https://doi.org/10.22059/ijfcs.2017.225508.654251 (In Persian)
48. Zhang, T., Hu, Y., Zhang, K., Tian, C., and Guo, J. 2019. Arbuscular micorrhizal fungi improve plant growth of Ricinus communis by altering photosynthetic properties and increasing pigments under drought and salt stress. Industrial Crops and Products, 117: 13-19. https://doi.org/10.1016/j.indcrop.2018.02.087
49. Zulkarami, B., Ashrafuzzaman, M., Husni, O., and Ismail, M. 2011. Effect of pyroligneous acid on growth, yield and quality improvement of rock melon in soilless culture. Australian Journal of Crop Science, 5(12): 1508-1514.