نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری خاک‌شناسی، دانشکدۀ کشاورزی، دانشگاه گیلان، رشت، ایران

2 دانشیار گروه خاک شناسی، دانشکدۀ کشاورزی، دانشگاه گیلان، رشت، ایران

3 استاد گروه خاک شناسی، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران

چکیده

رطوبت خاک به دلیل تاثیرگذاری زیاد بر بازتاب طیفی خاک و تغییرپذیری زمانی و مکانی بالا، مهمترین عامل اختلاگر در بکارگیری تکنیک طیف‌سنجی بازتابی مرئی و مادون قرمز نزدیک (VNIRS) جهت برآورد فلزات سنگین خاک به حساب می‌آید. در این پژوهش، قابلیت الگوریتم متعامدسازی پارامتر خارجی (EPO) در کاهش اثر رطوبت از بازتابندگی طیفی خاک به منظور بهبود قابلیت روش‌های یادگیری ماشین در برآورد فلزات سنگین مورد ارزیابی قرار گرفته است. بدین منظور، تعداد 129 نمونه خاک از مزارع آلوده به فلزات سنگین در استان‌های تهران، گیلان و آذربایجان شرقی برداشت شد. میزان نیکل و سرب نمونه‌های خاک هواخشک و الک‌شده در آزمایشگاه اندازه‌گیری شدند. بازتابندگی طیفی نمونه‌های خاک در ۷ سطح رطوبتی (هواخشک، ۶، ۱۲، ۱۸، ۲۴، ۳۰ و ۳۶درصد) با استفاده از طیف-سنج FieldSpec-3 و پروب تماسی در محدوده 350-2500 نانومتر در اتاق تاریک اندازه‌گیری شدند. الگوریتم EPO با استفاده از مجموعه نمونه‌های واسنجی توسعه داده شد. از الگوریتم‌های یادگیری ماشین PLSR و SVR جهت برآورد فلزات سنگین استفاده شد. نتایج نشان داد که VNIRS قابلیت بالایی در برآورد فلزات سنگین بصورت هواخشک دارد. حضور رطوبت در خاک، حتی در سطح 6%، منجر به کاهش معنی‌داری در قابلیت این تکنیک در برآورد دقیق فلزات سنگین می‌گردد. در رطوبت بیشتر از 24 درصد، عملکرد مدل‌های یادگیری ماشین برای برآورد فلزات سنگین در کلاس متوسط (1.4<RPD <2) قرار می‌گیرند. بطورکلی، بکارگیری روش EPO، از طریق اصلاح اثر رطوبت بر بازتابندگی طیفی، سبب بهبود قابلیت روش‌های یادگیری ماشین مبتنی بر VNIRS در برآورد فلزات سنگین خاک می‌شود. در میان دو روش‌ یادگیری ماشین، SVR بهترین عملکرد را برای مدل‌سازی نیکل و سرب به دست داد. نتایج حاکی از آن است که VNIRS در برآورد نیکل نسبت به سرب قابلیت بیشتری دارد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Improving the accuracy of soil heavy metal concentration estimation based on spectral reflectance by minimizing the effect of moisture with the external parameter orthogonalization algorithm

نویسندگان [English]

  • Soheila Alioghli 1
  • Mahmoud Shabanpour 2
  • Hosein Ali Bahrami 3

1 Ph.D. Student, Department of Soil Science, Faculty of Agricultural Sciences, University of Guilan, Rasht, Gilan, Iran

2 Associate Professor, Department of Soil Science, Faculty of Agricultural Sciences, University of Guilan, Rasht, Gilan, Iran

3 Professor,Department of Soil Sciences, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran

چکیده [English]

Introduction: Rapid global industrial development has led to a significant increase in the risk of environmental contamination with heavy metals. Soil contamination with heavy metals is a challenge due to the risks associated with human health and the environment, as well as soil-related food security. It is considered universal. Soil moisture, as one of the influencing parameters on soil spectral reflectance and its high spatio-temporal variability, is considered the most important confounding factor in using Visible and Near Infrared Reflectance Spectroscopy (VNIRS) techniques to estimate soil heavy metals. . In this study, the ability of the external parameter orthogonal (EPO) algorithm to reduce the effect of moisture on soil spectral reflectance was evaluated to improve the performance of machine learning methods for heavy metal estimation.

Materials and Methods: In the present study, a modeling approach based on spectral information obtained from VNIRS technique is used to investigate the effect of soil moisture on the estimation of heavy metal concentration (nickel and lead). Soil samples were obtained from areas suspected of heavy metal contamination. For this purpose, 129 soil samples were collected from fields contaminated with heavy metals in Tehran, Gilan and East Azerbaijan provinces. Nickel and lead concentrations in air-dried and sieved soil samples were measured in the laboratory using the ISO 11466 method. Then the soil samples were coded and transferred to the dark room for spectroscopy. Spectral reflectance of soil samples at 7 moisture levels (air-dried, 6, 12, 18, 24, 30 and 36%) using a FieldSpec-3 spectrometer and a contact probe in the spectral range of 350-2500 nm in a room Darkness was measured. After applying the necessary pre-processing, the soft and de-noised spectra related to the soil samples were randomly separated into two sets of data sets for modeling and validation. EPO using a set of calibration samples was developed. To estimate heavy metals, machine learning algorithms including PLSR and SVR were used.

Results and Discussion: The results indicate that with the increase in soil moisture, the spectral reflectance in the entire range of 2450-400 nm decreases non-linearly. This means that the amount of reduction in different wavelengths is not the same. The greatest reduction occurs in the range of absorption peaks located in the range of wavelengths of 1600-1400 nm and 1850-2000 nm. VNIR spectroscopy has a high ability to estimate nickel and lead heavy metals in dry soil. The presence of moisture in the soil, even at the level of 6%, leads to a significant decrease in the ability of this technology to accurately estimate heavy metals in the soil. At humidity greater than 24%, both machine learning models evaluated for both heavy metals are in the medium class.

Conclusion: In a general conclusion, it can be stated that the use of EPO algorithm significantly improves the ability of machine learning methods in the estimation of heavy metals in soil in the presence of moisture in soil samples. In general, SVR algorithm has the best performance compared to PLSR methods for modeling soil heavy metals. On the other hand, VNIR reflectance spectrum information provides more capability in estimating nickel than lead.

In this study, the ability of the EPO method was evaluated in order to minimize the effect of soil moisture disturbing parameters on the ability of VNIR spectroscopy to improve the accuracy of soil heavy metal concentration modeling including nickel and lead based on PLSR and SVR machine learning methods. The results indicate that with the increase in soil moisture, the spectral reflectance in the entire range of 2450-400 nm decreases non-linearly. This means that the amount of reduction in different wavelengths is not the same. The greatest decrease occurs in the range of absorption peaks located in the wavelength range of 1600-1400 nm and 1850-2000 nm. VNIR spectroscopy has a high ability to estimate nickel and lead heavy metals in dry soil. The presence of moisture in the soil, even at the level of 6%, leads to a significant decrease in the ability of this technology to accurately estimate heavy metals in the soil. At humidity greater than 24%, both machine learning models are evaluated for both heavy metals in the medium class. Using the EPO algorithm significantly improves the ability of machine learning methods to estimate heavy metals in soil in the presence of moisture in soil samples. In general, SVR algorithm has the best performance compared to PLSR methods for modeling soil heavy metals. On the other hand, the information of VNIR reflectance spectrum offers more capability in estimating nickel than lead.

کلیدواژه‌ها [English]

  • Soil pollution
  • Heavy metals
  • VNIR Spectroscopy
  • Soil moisture
  • EPO
  • Machine learning