نوع مقاله : مقاله پژوهشی
نویسندگان
1 دانشجوی کارشناسی ارشد، گروه مهندسی بیوسیستم، دانشگاه شهید چمران اهواز، ایران
2 دانشیار، گروه مهندسی بیوسیستم، دانشگاه شهید چمران اهواز، ایران
چکیده
هضم بیهوازی فضولات دام و طیور به منظور تولید زیستگاز و کود مرغوب، فناوری مناسبی برای به حداقل رساندن مشکلات زیستمحیطی حاصل از آنها میباشد. در این مطالعه دادههای مکانی و غیرمکانی، جهت تعیین مکانهای بهینه برای نصب هاضمهای بیهوازی فضولات دام و طیور در جنوب شرق استان خوزستان، با سیستم اطلاعات جغرافیایی ادغام شدند. برای مکانیابی مناسب، سه مجموعه از عوامل زیستمحیطی، اجتماعی-ایمنی و توپوگرافی در یک تحلیل با استفاده از 14 معیار مد نظر قرار گرفت. با توجه به نتایج، امکان تولید سالانه 25/7 میلیون مترمکعب زیستگاز در منطقه مورد مطالعه، از طریق هضم بیهوازی فضولات دام و طیور وجود دارد. لایههای معیارها بر اساس وزن به دست آمده توسط کارشناسان همپوشانی گردید و لایه تناسب اراضی جهت احداث هاضم بیهوازی و نیروگاه ایجاد شد. نتایج حاکی از آن است که "پتانسیل مکانی تولید زیستگاز" و "دسترسی به جاده و مراکز مصرف انرژی"، به ترتیب مؤثرترین عوامل موثر بر تعیین مکان نیروگاه هستند. با استفاده از تحلیل فضایی در محیط ArcGIS، سطح منطقه به پنج رده "نامناسب"، "ضعیف"، "متوسط"، "مناسب" و "بسیار مناسب" برای احداث نیروگاه تولید زیستگاز طبقهبندی شد. بیشترین مساحت منطقه مورد مطالعه با 28/73 درصد در رده "کاملا نامناسب" قرار گرفت در حالی که رده "بسیار مناسب" کمترین مساحت را با 68/1 درصد به خود اختصاص داد. همچنین لایه تناسب اراضی نشان داد که توزیع مناسبی از سطوح با رده "مناسب" یا "بسیار مناسب" در منطقه مورد مطالعه، برای احداث نیروگاه زیستگاز وجود دارد.
کلیدواژهها
موضوعات
عنوان مقاله [English]
Locating a power plant with biogas feed obtained from anaerobic digestion of animal manure (Case study: Southeast of Khuzestan province)
نویسندگان [English]
- Abbas Shekofte del 1
- Abbas Asakereh 2
- Mohsen Soleymani 2
- Seyed Mohammad Safieddin Ardebili 2
1 M.Sc. Student, Department of Biosystems Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
2 Associate Professor, Department of Biosystems Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
چکیده [English]
Introduction: Anaerobic digestion, in addition to producing biogas, can minimize the environmental problems of animal manure and produce high-quality fertilizer. Finding suitable places for the construction of anaerobic digestion reactors is essential for the sustainable development of these types of power plants. Locating the biogas production site is a complex process with different and sometimes contradictory criteria including environmental, economic and technical criteria from which the location-related factors play the main role. The integration of geographic information systems (GIS) with multi-criteria decision making (MCDM) provides a powerful tool that can be useful in locating biogas power plants.
Materials and Methods: In this study, spatial and non-spatial data were integrated with geographic information system in order to determine the optimal places for installing anaerobic digesters of livestock and poultry waste in the southeast of Khuzestan province. Data related to the type and number of livestock and poultry were collected separately from the Ministry of Agriculture. The location of livestock farms and chicken farms was determined using the GPS system. Livestock and poultry raised in the traditional way in the villages were not taking into account due to the problems of collecting manure and lack of economic justification. In order to determine the evaluation criteria and score them, similar studies, rules and guidelines, as well as the Delphi technique were used. 14 sub-criteria were evaluated in three main environmental, social-safety and topographical groups. Land suitability layers for the construction of anaerobic digestion reactors were prepared from the perspective of all sub-criteria in the GIS environment. In order to simplify calculations and easier weighting of criteria and sub-criteria to obtain the final result, some layers of criteria were combined. In this way, 14 layers were combined and overlapped until 7 layers of final criteria were formed. Since the spatial potential layer of biogas production is the main criterion and has the main effect on the suitability of land for the construction of a power plant, and on the other hand, it has no essential relationship with other criteria, it was valued separately. Roads and residential areas were also valued separately due to the greater importance of lower transport costs, accessibility, reducing transport time and losses, as well as environmental, health and safety impacts. The overall layer of surface water was obtained by multiplying the four layers of land suitability considering the sea, river, wetland and flood prone areas. Sensitive areas including forest, agriculture and protected areas were also considered in an exclusive layer. The other two layers were the combination layer of slope, height and fault, and the combination of railway lines and high voltage power lines. These layers were weighted using pairwise comparisons and hierarchical analysis method. The final layer of land suitability for the construction of anaerobic digesters and power plant was created by overlapping all the criteria layers based on the obtained weight.
Results and Discussion: The findings showed that anaerobic digestion of livestock and poultry wastes in the region has a potential to produce 7.25 million m3/year of biogas. Cow and chicken excrement have the largest share with 51.32 and 29.34 percent, respectively. The restriction layer showed that 73.28% of the area is unusable due to one or more restrictions. The results also showed that "regional biogas production potential" and "access to roads and energy consumption centers" are respectively the most effective factors in determining the appropriate location for the power plant. Finally, using spatial analysis in ArcGIS environment, the studied area was classified into five suitability levels: "unsuitable", "weak", "moderate", "suitable" and "very suitable". Based on this, 73.28% of the studied area was completely unsuitable and only 1.68% of the studied area was very suitable for the construction of a power plant. But in almost all the studied areas, there was enough land with suitable or very suitable conditions to build a biogas plant.
Conclusion: In the studied area, lands with suitable conditions for the construction of a power plant from animal waste using anaerobic digestion technology were identified. There is a suitable distribution of "suitable" or "very suitable" levels in the study area for the construction of a biogas power plant. The findings of this study can be a guide for those in charge to make a decision for the construction of a power plant.
کلیدواژهها [English]
- Renewable energy
- Biogas
- Location analysis
- Suitability of land use
- Environmental factors
1. Afzali, A., Sabri, S., Rashid, M., Mohammad Vali Samani, J., and Ludin, A. N. M. 2014. Inter-Municipal Landfill Site Selection Using Analytic Network Process. Water Resources Management, 28(8): 2179–2194.
2. Akther, A., Ahamed, T., Noguchi, R., Genkawa, T., and Takigawa, T. 2019. Site suitability analysis of biogas digester plant for municipal waste using GIS and multi-criteria analysis. Asia-Pacific Journal of Regional Science, 3(1): 61–93.
3. Anonymous. 2019. Regulations and rules for the establishment of production and industrial units. Office of Environmental Assessment, Department of Environment (in Persian).
4. Anonymous. 2021. Energy Balance Sheet of Iran. Iran Ministry of Energy Deputy of Electricity and Energy Affairs, Tehran. (in Persian).
5. Aragonés-Beltrán, P., Pastor-Ferrando, J. P., García-García, F., and Pascual-Agulló, A. 2010. An Analytic Network Process approach for siting a municipal solid waste plant in the Metropolitan Area of Valencia (Spain). Journal of Environmental Management, 91(5): 1071–1086.
6. Arkoc, O. 2014. Municipal solid waste landfill site selection using geographical information systems: a case study from Çorlu, Turkey. Arabian Journal of Geosciences, 7(11): 4975–4985.
7. Asakereh, A., Soleymani, M., and Safieddin Ardebili, S. M. 2022. Multi-criteria evaluation of renewable energy technologies for electricity generation: A case study in Khuzestan province, Iran. Sustainable Energy Technologies and Assessments, 52: 102220.
8. Asakereh, A., Soleymani, M., and Sheikhdavoodi, M.J. 2017. A GIS-based Fuzzy-AHP method for the evaluation of solar farms locations: Case study in Khuzestan province, Iran. Solar Energy, 155: 342–353.
9. Ayaim, M.K., Fei-Baffoe, B., Sulemana, A., Miezah, K., and Adams, F. 2019. Potential sites for landfill development in a developing country: A case study of Ga South Municipality, Ghana. Heliyon, 5(10), e02537.
10. Bond, T., and Templeton, M.R. 2011. History and future of domestic biogas plants in the developing world. Energy for Sustainable Development, 15(4): 347–354.
11. Bumharter, C., Bolonio, D., Amez, I., Martínez, M. J. G., and Ortega, M. F. 2023. New opportunities for the European Biogas industry: A review on current installation development, production potentials and yield improvements for manure and agricultural waste mixtures. Journal of Cleaner Production, 388: 135867.
12. Chabok, M., Asakereh, A., Bahrami, H., and Jaafarzadeh, N. O. 2020. Selection of MSW landfill site by fuzzy-AHP approach combined with GIS: case study in Ahvaz, Iran. Environmental Monitoring and Assessment, 192(7): 1–15.
13. Charabi, Y., and Gastli, A. 2011. PV site suitability analysis using GIS-based spatial fuzzy multi-criteria evaluation. Renewable Energy, 36(9): 2554–2561.
14. Díaz-Vázquez, D., Alvarado-Cummings, S.C., Meza-Rodríguez, D., Senés-Guerrero, C., de Anda, J., and Gradilla-Hernández, M. S. 2020. Evaluation of Biogas Potential from Livestock Manures and Multicriteria Site Selection for Centralized Anaerobic Digester Systems: The Case of Jalisco, México. Sustainability, 12(9): 3527.
15. Elauria, J. C., Castro, M. L. Y., Elauria, M. M., Bhattacharya, S. C., and Abdul Salam, P. 2005. Assessment of sustainable energy potential of non-plantation biomass resources in the Philippines. Biomass and Bioenergy, 29(3): 191–198.
16. EPA, 2019. US Environmental Protection Agency. Retrieved from https://www-epa-gov.translate.goog.
17. Feiz, R., Johansson, M., Lindkvist, E., Moestedt, J., Påledal, S.N., and Ometto, F. 2022. The biogas yield, climate impact, energy balance, nutrient recovery, and resource cost of biogas production from household food waste—A comparison of multiple cases from Sweden. Journal of Cleaner Production, 378: 134536.
18. Ferretti, V., and Pomarico, S. 2012. Integrated sustainability assessments: A spatial multicriteria evaluation for siting a waste incinerator plant in the Province of Torino (Italy), Environment. Development and Sustainability, 14(5): 843–867.
19. Feyzi, S., Khanmohammadi, M., Abedinzadeh, N., and Aalipour, M. 2019. Multi- criteria decision analysis FANP based on GIS for siting municipal solid waste incineration power plant in the north of Iran. Sustainable Cities and Society, 47: 101513.
20. Franco, C., Bojesen, M., Hougaard, J.L., and Nielsen, K. 2015. A fuzzy approach to a multiple criteria and Geographical Information System for decision support on suitable locations for biogas plants. Applied Energy, 140: 304–315.
21. Höhn, J., Lehtonen, E., Rasi, S., and Rintala, J. 2014. A Geographical Information System (GIS) based methodology for determination of potential biomasses and sites for biogas plants in southern Finland. Applied Energy, 113: 1–10.
22. Jayachandran, M., Gatla, R.K., Rao, K.P., Rao, G.S., Mohammed, S., Milyani, A.H., Azhari, A.A., Kalaiarasy, C., and Geetha, S. 2022. Challenges in achieving sustainable development goal 7: Affordable and clean energy in light of nascent technologies. Sustainable Energy Technologies and Assessments, 53: 102692.
23. Kamdar, I., Ali, S., Bennui, A., Techato, K., and Jutidamrongphan, W. 2019. Municipal solid waste landfill siting using an integrated GIS-AHP approach: A case study from Songkhla, Thailand, Resources. Conservation and Recycling, 149: 220–235.
24. Khan, M. U., and Ahring, B. K. 2021. Improving the biogas yield of manure: Effect of pretreatment on anaerobic digestion of the recalcitrant fraction of manure. Bioresource technology, 321: 124427.
25. Kheybari, S., and Rezaie, F.M. 2020. Selection of biogas, solar, and wind power plants’ locations: An MCDA approach. Journal of Supply Chain Management Science, 1(1–2): 45–71.
26. Kurka, T., Jefferies, C., and Blackwood, D. 2012. GIS-based location suitability of decentralized, medium scale bioenergy developments to estimate transport CO2 emissions and costs. Biomass and Bioenergy, 46: 366–379.
27. Ma, J., Scott, N.R., DeGloria, S.D., and Lembo, A.J. 2005. Siting analysis of farm-based centralized anaerobic digester systems for distributed generation using GIS. Biomass and Bioenergy, 28(6): 591–600.
28. Markou, G., Brulé, M., Balafoutis, A., Kornaros, M., Georgakakis, D., and Papadakis, G. 2017. Biogas production from energy crops in northern Greece: economics of electricity generation associated with heat recovery in a greenhouse. Clean Technologies and Environmental Policy, 19(4): 1147–1167.
29. Molavi, M., Taleai, M., and Javadi, G. 2020. Land suitability evaluation based on multi-criteria decision-making methods for locating wind farms in Khorasan Razavi province. Iranian journal of Remote Sensing and GIS, 11(3):59-78 (in Persian with English abstract).
30. Motlagh, Z.K., and Sayadi, M.H. 2015. Siting MSW landfills using MCE methodology in GIS environment (Case study: Birjand plain, Iran). Waste Management, 46: 322–337.
31. Pasalari, H., Nodehi, R.N., Mahvi, A.H., Yaghmaeian, K., and Charrahi, Z. 2019. Landfill site selection using a hybrid system of AHP-Fuzzy in GIS environment: A case study in Shiraz city, Iran. MethodsX, 6: 1454–1466.
32. Perera, K.K.C.K., Rathnasiri, P.G., Senarath, S.A.S., Sugathapala, A.G.T., Bhattacharya, S.C., and Abdul Salam, P. 2005. Assessment of sustainable energy potential of non-plantation biomass resources in Sri Lanka. Biomass and Bioenergy, 29(3): 199–213.
33. Rahimi, S., Hafezalkotob, A., Monavari, S.M., Hafezalkotob, A., and Rahimi, R. 2020. Sustainable landfill site selection for municipal solid waste based on a hybrid decision-making approach: Fuzzy group BWM-MULTIMOORA-GIS. Journal of Cleaner Production, 248: 119186.
34. Sadeqi, Z., Dalalbashi Esfahani, Z., and and Horri, H.R. 2013. Prioritize the Factors Affecting the Location of Renewable Energy Plants (Solar and Wind Energy) in Kerman Province Using GIS and Multi-Criteria Decision-Making Techniques. Energy Policy and Planning Research, 1(2):93-110 (in Persian with English abstract).
35. Şener, Ş., Şener, E., Nas, B., and Karagüzel, R. 2010. Combining AHP with GIS for landfill site selection: A case study in the Lake Beyşehir catchment area (Konya, Turkey). Waste Management, 30(11): 2037–2046.
36. Shi, X., Elmore, A., Li, X., Gorence, N.J., Jin, H., Zhang, X., and Wang, F. 2008. Using spatial information technologies to select sites for biomass power plants: A case study in Guangdong Province, China. Biomass and Bioenergy, 32(1): 35–43.
37. Silva, S., Alçada-Almeida, L., and Dias, L.C. 2014, Biogas plants site selection integrating Multicriteria Decision Aid methods and GIS techniques: A case study in a Portuguese region. Biomass and Bioenergy, 71: 58–68.
38. Sliz-Szkliniarz, B., and Vogt, J. 2012. A GIS-based approach for evaluating the potential of biogas production from livestock manure and crops at a regional scale: A case study for the Kujawsko-Pomorskie Voivodeship. Renewable and Sustainable Energy Reviews, 16(1): 752–763.
39. Soleymani, M., Asakereh, A., and Safieddin Ardebili, S. M. 2022. A GIS-based multi-criteria fuzzy approach to select a suitable location for a MSW-based power plant and landfill: a case study, Khuzestan province, Iran. Environmental Monitoring and Assessment, 194(3): 1–20.
40. Sultana, A., and Kumar, A. 2012. Optimal siting and size of bioenergy facilities using geographic information system. Applied Energy, 94: 192–201.
41. Tavares, G., Zsigraiová, Z., and Semiao, V. 2011. Multi-criteria GIS-based siting of an incineration plant for municipal solid waste. Waste Management, 31(9–10): 1960–1972.
42. Venier, F., and Yabar, H. 2017. Renewable energy recovery potential towards sustainable cattle manure management in Buenos Aires Province: Site selection based on GIS spatial analysis and statistics. Journal of Cleaner Production, 162: 1317–1333.
43. Yalcinkaya, S. 2020. A spatial modeling approach for siting, sizing and economic assessment of centralized biogas plants in organic waste management. Journal of Cleaner Production, 255: 120040.
44. Yalcinkaya, S., and Kirtiloglu, O.S. 2021. Application of a geographic information system-based fuzzy analytic hierarchy process model to locate potential municipal solid waste incineration plant sites: A case study of Izmir Metropolitan Municipality. Waste Management and Research, 39(1): 174–184.
45. Zareei, S. 2018. Evaluation of biogas potential from livestock manures and rural wastes using GIS in Iran. Renewable Energy, 118: 351–356.