نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری گروه علوم خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

2 دانشیار گروه علوم خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

چکیده

بیوچار به‌دلیل دارا بودن سطح ویژه بالا، ساختار متخلخل و گروه‌های عامل پیوندی اکسیژنی در سطح آن می‌تواند به‌عنوان ماده اولیه برای تهیه و سنتز کامپوزیت معدنی یا فلزی مورد استفاده قرار گیرد. در این کامپوزیت‌ها، از بیوچار به‌عنوان یک ساختار متخلخل خوب برای حمایت و میزبانی فلزات استفاده می‌شود. بنابراین پژوهش حاضر با هدف بررسی کارایی پلت بیوچارهای غنی شده با روی به دو روش پیش و پس گرماکافت و تأثیر آن-ها بر زیست فراهمی روی در خاک، برخی ویژگی‌های فیزیولوژیک (کلروفیل a، b و کل) و جذب روی در گندم انجام گرفت. بدین منظور آزمایش فاکتوریل در قالب طرح کاملاً تصادفی در سه تکرار و با 18 تیمار به اجرا درآمد. فاکتورها شامل سه نوع منبع تأمین کننده روی به صورت مصرف خاکی (سولفات روی، بیوچار غنی از روی به روش پیش گرماکافت و پس گرماکافت)، سه سطح روی (0، 10 و 20 میلی‌گرم روی بر کیلوگرم خاک) و محلول‌پاشی روی (محلول‌پاشی با آب مقطر و سولفات روی 3 در هزار) بود. نتایج نشان داد تیمارهای مورد بررسی باعث افزایش ویژگی‌های فیزیولوژیک در گیاه گندم شد به نحوه‌ا‌ی که بیشترین مقدار کلروفیل a، b، کل به ترتیب با میانگین 99/4، 36/3 و 35/8 میلی‌گرم بر گرم وزن تازه گیاه از تیمار پلت بیوچار پیش گرماکافت با غلظت 20 میلی‌گرم برکیلوگرم همراه با محلول‌پاشی روی بدست آمد. همچنین بیشترین جذب روی در هر دو مرحله ظهور پرچم و مرحله برداشت به ترتیب با میانگین 33/120 و 62/86 میلی‌گرم بر کیلوگرم وزن خشک گیاه از تیمار پلت بیوچار پیش و پس گرماکافت با غلظت 20 میلی‌گرم برکیلوگرم همراه با محلول‌پاشی روی بدست آمد که نسبت به تیمار 20 میلی‌گرم بر کیلوگرم همراه با محلول‌پاشی سولفات روی به ترتیب افزایشی معادل با 69/27 و 30 درصد داشت. به طور کلی، نتایج بیانگر نقش مثبت پلت بیوچار- روی در افزایش غلظت و جذب روی درگیاه گندم بود. با این وجود، محلول پاشی تکمیلی روی همراه با پلت بیوچار غنی از روی به مقدار 20 میلی‌گرم بر کیلوگرم به صورت پیش گرماکافت بیشترین تأثیر را بر ویژگی‌های فیزیولوژیک و زیست فراهمی روی برای گیاه گندم داشت.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Effect of co-application of zinc enriched biochar and foliar application of zinc on some physiological traits and the zinc uptake in wheat (Triticum aestivum L.)

نویسندگان [English]

  • Narges Sousaraei 1
  • Mojtaba Barani Motlagh 2
  • Seyed Alireza Movahedi Naeini 2

1 PhD Student, Department of Soil Science, Gorgan University of Agricultural Sciences and Natural Resources

2 Associate Professor, Department of Soil Science, Gorgan University of Agricultural Sciences and Natural Resources

چکیده [English]

Introduction: When the supply of micronutrients needed by the plant is insufficient, not only the yield of the product but also the quality of plant products are affected. Application of organic amendments is one of the ways to increase the nutrients such as zinc uptake by plants for. Biochar can be used as a raw material for the preparation and synthesis of mineral or metal composites due to its high specific surface area, porous structure and oxygen bonding groups on its surface. In these composites, biochar is used as a good porous structure to support and host metals. Biochar can have a significant impact on soil properties, the availability of nutrients, and the dynamics of the nutrients in arid and semi-arid soils, Depending on the feedstock and pyrolysis conditions However, very limited studies have examined biochar use as a nutrient carrier in the synthesis of organic-mineral compounds. Therefore, the present study was done to investigate the efficiency of zinc-enriched biochar pellets using two pre-pyrolysis and post- pyrolysis methods, and their effect on some physiological traits (chlorophyll a, b and total) and bioavailability of zinc in soil and plant.
Materials and Methods: A zinc deficiency Soil was collected from 0-30 cm depth under arable lands of Seyed Abad located in Azadshahr township, Golestan Province, Iran. To achieve the objectives of this study, a factorial experiment in a completely randomized design with three replications and 18 treatments (54 pots in total) was performed in the greenhouse of Gorgan University of Agricultural Sciences and Natural Resources. Factors included three types of zinc fertilizers (zinc sulphate, zinc-rich biochar prepared using pre-pyrolysis and post-pyrolysis methods) in three levels (0, 10 and 20 mg kg-1 zinc) and foliar spraying (distilled water and 3:1000 zinc). Zinc foliar spraying was done during the 6-10 leaf stage in the early hours of the morning before sunrise. Irrigation and weeding operations were performed manually. At the end of the growing period (vegetative and reproductive), some physiological traits (chlorophyll a, b, total and carotenoid), concentration and zinc uptake in shoots in the two stages of flag leaf emergence and seed maturity, and available concentration of zinc in the soil after wheat plant harvest were measured. The statistical results of the data were analyzed using SAS software and LSD test (at 5% level) was used for comparing the mean values.
Results and Discussion: Based on the results, the interaction of type and levels of treatments was significant on all the studied traits at P<0.01, except for carotenoid. The means comparison showed that both zinc-enriched biochar pellets and zinc sulfate increased physiological traits in wheat plants. The highest amount of chlorophyll a, b, and total was obtained with an average of 4.99, 3.36, and 8.35 mg g-1 of fresh weight of the plant from the treatment of a pre-pyrolysis pellet with a concentration of 20 mg kg-1 with zinc sulfate foliar spraying, respectively. The highest zinc uptake in both the flag leaf emergence and seed maturity stages was obtained with an average of 120.33 and 86.62 mg kg-1 of dry weight of the plant from the pre and post-pyrolysis pellet treatment with a concentration of 20 mg/kkg with zinc sulfate foliar spraying, which had an increase of 20 mg kg-1 of zinc sulfate foliar spraying, respectively, equivalent to 27.69 and 30%. The pre-pyrolysis pellet treatment with 20 mg kg-1 zinc and zinc sulfate foliar spraying gave the most zinc extracted with DTPA, at an average of 3.41 mg kg-1. This was compared to the 10 mg kg-1 and 0 mg kg-1 pre-pyrolysis biochar pellet treatments, which gave an average of 2.39 mg kg-1 and 0.92 mg kg-1, respectively, which is an increase of 29.91 and 73.02 percent. The amount of DTPA extractable Zn with the amount of chlorophyll a (r = 0.87**), chlorophyll b (r = 0.81**), total chlorophyll (r = 0.87**), and carotenoids (r = 0.89**) had a positive and significant correlation. The results showed that between DTPA extractable Zn with zinc concentration (r = 0.91**) and zinc uptake (r = 0.90**) in the stage of flag emergence and zinc concentration (r = 0.87**) and zinc uptake (r = 0.86**) in the stage of seed maturity in the wheat plant, there was a positive and significant correlation.
Conclusions: In general, the results showed that the positive role of biochar-zinc pellets in increasing the concentration and zinc uptake in wheat plants. Nevertheless, supplemental zinc foliar application with biochar pellets rich in zinc in the amount of 20 mg kg-1 in the form of post-pyrolysis had the greatest effect on the physiological characteristics and Zn bioavailability for wheat plants.

کلیدواژه‌ها [English]

  • Pellet
  • Post- pyrolysis
  • Pre- pyrolysis
  • Chlorophyll
1. Abbas, T., Rizwan, M., Ali, S., Zia-ur-Rehman, M., Qayyum, M.F., Abbas, F., Hannan, F., Rinklebe, J., and Ok, Y.S. 2017. Effect of biochar on cadmium bioavailability and uptake in wheat (Triticumaestivum L.) grown in a soil with aged contamination. Journal of Ecotoxicology and Environmental Safety,140: 37-47.
2. Abdollahi, A., Norouzi-Masir, M., Taghavi, M., and Moezzi, A. 2019. Effect of zinc oxide nanoparticles on zinc chemical forms in soil solution phase and its correlation with concentration and uptake of zinc in wheat. Journal of Applied Soil Research, 7(4): 35-46. (In Persian with English abstract)
3. Adejumo, S.A., Owolabi, M.O., and Odesola, I.F. 2016. Agro-physiologic effects of compost and biochar produced at different temperatures on growth, photosynthetic pigment and micronutrients uptake of maize crop. African Journal of Agricultural Research, 11(8): 661-673.
4. Afyuni, M., Khoshgoftarmanesh, A.H., Dorostkar, Schulin, R., Chaney, R.L., and Daneshbakhsh, B. 2010. Micronutrient-efficient genotypes for crop yield and nutritional quality in sustainable agriculture. Journal of Agronomy Sustainale, 30: 83-107.
5. Aghaee, A., Shahabivand, S., Athari, M., and Nasiri, Y. 2022. The effect of foliar application of zinc oxide and zinc nanoparticles on growth, photosynthetic pigments and essential oil compounds of green basil. Journal of Plant Research Journal, 35(2): 218-231.(In Persian)
6. Ahmad, S., Mfarrej, M. F. B., El-Esawi, M. A., Waseem, M., Alatawi, A., and Nafees, M. 2022. Chromium-resistant Staphylococcus aureus alleviates chromium toxicity by developing synergistic relationships with zinc oxide nanoparticles in wheat. Journal Ecotoxicol Environ Safety, 230: 113-142.
7. Alloway, B. J. 2008. Zinc in Soils and Crop Nutrition. Second edition, published by IZA and IFA Brussels, Belgium and Paris, France.
8. Arnon, D. I. 1949.Copper enzymes in isolated chloroplasts. Poly phenol oxidase in Beta vulgaris. Plant Physiology, 24: 1_15.
9. Backes, C.A., McLaren, R.G., Rate A.W., and Swift, R.S. 1995. Kinetics of cadmium and cobalt desorption from iron and manganese oxides. Journal of Soil Science Society of America, 59(3): 778-785.
10. Bazi Abdoli, M., Barani Motlagh, M., Bostani, A., and Nazari, T. 2023. Acid-modified Biochar Effect on Some Physiological Indicators and Micronutrient Availability of Quinoa (cv. Gizavan) in a Calcareous Soil. Journal of Water and Soil, 37(4): 589-602. (In Persian with English abstract)
11. Benton, J., and Case, V.W. 1990. Sampling, handling and analyzing plant tissue samples. In: Westerman, R. L. (Ed.). Soil testing and plant analysis. 3rd Ed. Book series No. 3. Soil Science Society of America, Inc. Madison, WI., USA. pp. 389-428.
12. Boostani, H. R.2017. Effect of organic manures, their biochars and arbuscular mycorrhizae fungi on distribution of zinc chemical fractions in a calcareous soil. Journal of Water and Soil Conservation, 24(5): 49-71. (In Persian with English abstract)
13. Boostani, H.R., Chorom, M., Moezzi, A., Karimian, N., and Enayatizamir, N. 2017. Effect of Salinity and Organic Matter on Distribution of Zinc Chemical Forms in a Calcareous Soil after Maize Cultivation. Journal of Water and Soil Science, 27(1): 1-10. (In Persian).
14. Boostani, H.R., Chorom, M., Moezzi, A., Karimian, N., Enayatizamir, N., and Zarei, M. 2016. Effect of plant growth promoting rhizobacteria (PGPR) and arbuscular mycorrhizae fungi (AMF) application on distribution of zinc chemical forms in a calcareous soil with different levels of salinity. Journal of Soil Management and Sustainabl Production, 6(1): 1-24. (In Persian with English abstract).
15. Chereskin, B.M., and Castelfrance, P.A. 1982. Effects of iron and oxygen on chlorophyll biosynthesis II. Observation on the biosynthetic pathway in isolatedetio-chloroplasts. Journal of Plant Physiology, 68:112-116.
16. Cui, X., Lu, M., Bila Khan, M., Lai, C., Yang, X., He, Z., Chen, G., and Yan, B. 2020. Hydrothermal carbonization of different wetland biomass wastes: Phosphorus reclamation and hydrochar production. Journal of Waste Management, 102: 106-113.
17. Dong, D., Wang, C., Van Zwieten, L., Wang, H., Jiang, P., Zhou, M., and Wu, W. 2019. An effective biochar-based slow-release fertilizer for reducing nitrogen loss in paddy fields. Journal of Soils and Sediments, 20: 3027–3040.
18. Dotaniya, M.L., and Meena, V.D. 2015. Rhizosphere effect on nutrient availability in soil and its uptake by plants: a review. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 85(1):1-12.
19. Ebrahimi, Z., Biabani, A., Mohammadi, R., Sabouri, H., and Rahemi -Karizaki, A. 2021. Effect of wheat Enrichment by Foliar Application of Zinc and Iron on Quantitive and Qualitative Traits at Differnt Phenological Stages. Jornal of crop breeding, 13(38): 138-148. (In Persian with English abstract)
20. Enders, A., Hanley, K., Whitman, T., Joseph, S., and Lehmann, J. 2012. Characterization of biochars to evaluate recalcitrance and agronomic performance. Journal of Bioresour Technol, 114: 644–653.
21. Fang, J., Zhan, L., Ok, Y.S., and Gao, B. 2018. Minireview of potential applications of hydrochar derived from hydrothermal carbonization of biomass. Journal of Industrial and Engineering Chemistry, 57: 15-21
22. FAO .2014. Core production data base, electronic resource under. P.
23. Faryadi - Shahgoli, M., Reyhanitabar, A., Najafi, N., and OUstan, Sh. 2021. The effect of biochar on concentration of DTPA-extractable zinc from acidic and alkaline soils in one year incubation period. Journal of Soil Management and Sustainable,11(3):29-52. (In Persian with English abstract)
24. Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., and Johnston, M. 2011. Solutions for a cultivated planet. Journal of Nature, 478(7369): 337–342.
25. Gartler, J., Robinson, B., Burton, K., and Clucas, L. 2013. Carbonaceous soil amendments to biofortify crop plants with zinc. Journal of Science Total Environment, 465: 308–313.
26. Ghafari, H., and Razmjoo, J. 2015. Response of Durum wheat to foliar application of varied sources and rates of iron fertilizers. Journal of Agricultural Science and Technology, 17: 321 -331
27. Glaser, B., Wiedner, K., Seelig, S., Schmidt, H. P., and Gerber, H. 2015. Biochar organic fertilizers from natural resources as substitute for mineral fertilizers. Journal of Agronomy for Sustainable Development, 35: 667-678.
28. Gwenzi, w., Nyambishi, T.J., Chaukura, N., and Mapope, N. 2017. Synthesis and nutrient release patterns of a biochar-based N–P–Kslow-release fertilizer. International journal of environmental science and technology,15:405-411.
29. Harter, R.D., and Naidu, R. 1995. Role of metal-organic complexation in metal sorption by soils. Journal of Advances in Agronomy, 55: 219-263.
30. Karimi, A., Moezzi, A., Chorom, M., and Enayatizamir, N. 2019. Chemical fractions and availability of Zn in a calcareous soil in response to biochar amendments. Journal of Soil Science and Plant Nutrition, 19: 851-864.
31. Karimi, A., Moezzi, A.A., Chorom, M., and Enayatizamir N. 2020. Influence of Sugarcane bagasse biochar on nutrition availability and biological properties of a calcareous soil. Journal of Applied Soil Research, 8(1):1-17. (In Persian with English abstract)
32. Khallizadeh, J., Dordipour, E., Baranimotlagh, M., and Gharanjiki, A. 2020. Effect of iron impregnated wheat straw and particleboard biochar on the iron uptake and growth of two soybean cultivars in a calcareous soil. Journal of Soil Management and SustainableProduction, 10: 83-100.
33. Kong, X.R., Liu, Y.X., Pi, J.C., Li, W.H., Liao, Q.H.G., and Shang, J.G. 2017. Low-cost magnetic herbal biochar: characterization and application for antibiotic removal. Journal of Environmental Science and Pollution Research, 24(7): 6679-6687.
34. Koushki, A., Alinejadian-Bidabadi, A., and Maleki, A. 2021. Effects of rice husk biochar and different irrigation regimes on growth, essential oil percentage, and concentration of some nutrients in peppermint (Mentha piperita L.)', Iranian Journal of Medicinal and Aromatic Plants Research, 37(5):733-752. (In Persian with English abstract)
35. Lehmann, J. 2007. Bio-Energy in the Black. Journal of Frontiers in Ecology and the Environment, 5:381–387
36. Lestan, D., Luo, C.L., and Li, X.D. 2008. The use of chelating agents in the remediation of metal-contaminated soils: a review. Journal of Environmental Pollution, 153: 3-13.
37. Li, C., Zhang, L., Gao, Y., and Li, A. 2018. Facile synthesis of nano ZnO/ZnS modified biochar by directly pyrolyzing of zinc contaminated corn stover for Pb (II), Cu (II) and Cr (VI) removals. Journal of Waste Management ,79: 625-637.
38. Li, H., Shen, J., Zhang, F., Clairotte, M., Drevon, J.J., Le Cadre, E., and Hinsinger P. 2008. Dynamics of phosphorus fractions in the rhizosphere of common bean (Phaseolus vulgaris L.) and durum wheat (Triticum turgidum durum L.) grown in monocropping and intercropping systems. Journal of Plant and Soil, 312(12):139-150.
39. Lindsay, W. L. and Norvell, W. A. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Journal of Soil Science Society of America, 42(3): 421-428.
40. Lindsay, W.L. 1979. Chemical Equilibria in Soils. 1st Ed. John Wiley and Sons Limited, 449p.
41. Malakouti, M. J. 2007. Zinc is a neglected element in the life cycle of plants. Middle Eastern and Russian Journal of Plant Science and Biotechnology, 1(1): 1-12.
42. Malakouti, M.J. 2015.Recommendation for Optimal fertilizer use in agricultural Crops of Iran. 3rd Edition. Publication of Tarbiat Modares University. Pp:103: 265-267.
43. Manikandan, A., and Subramanian, K.S. 2013. Urea intercalated biochar –a slow release fertilizer production and characterisation. Indian Journal of Science and Technology, 6(12): 5579–5584.
44. Meng, R., Chen, T., Zhang, Y., Lu, W., Liu, Y., Lu, T., Liu, Y. and Wang, H. 2018. Development, modification, and application of low-cost and available biochar derived from corn straw for the removal of vanadium (v) from aqueous solution and real contaminated groundwater. Journal of Royal Society of chemistry, 8(38): 21480-21494.
45. Meng, R., Chen, T., Zhang, Y., Lu, W., Liu, Y., Lu, T., Liu, Y. and Wang, H. 2018. Development, modification, and application of low-cost and available biochar derived from corn straw for the removal of vanadium (v) from aqueous solution and real contaminated groundwater. Journal of Royal society chemistry, 8(38): 21480-21494.
46. Mishra, V., Mishra, R. K., Dikshit, A., and Pandey, A. C. 2014. Interactions of nanoparticles with plants: An emerging prospective in the agriculture industry. Journal of In Emerging technologies and management of crop stress tolerance, 159–180.
47. Mortvedt, J.J. 1985. Plant uptake of heavy metals in zinc fertilizers made from industrial byproducts. Journal of Environmental Quality, 14(3): 424-427.
48. Motaghian, H. R., Hosseinpour, A., Raeisie, F. and Mohamadi, J. 2017. Assessment of several extractants for the determination of zinc bioavailability to Wheat (Triticum aestivum L.) in calcareous soils amended and unamended with sewage sludge. Journal of Water and Soil Science, 1:13-20. (In Persian with English abstract)
49. Murphy, J. and Riley, J.P.1962. A modified single solution method for the determination of phosphate in natural waters. Analytica chimica acta, 27: 31-36.
50. Nazari, T., Barani Motlagh, M., Dordipour, E., Ghorbani Nasrabadi, R., and Sefidgar-Shahkolaie, S. 2018. Effect of Humic Acid Application Method on Bioavailability of Iron in Canola. Journal of Water and Soil Science, 28(4):109-125. (In Persian with English abstract).
51. Nelson, D. W. and Sommers, L.E. 1996. Total carbon, organic carbon, and organic matter. Methods of soil analysis: Part 3 Chemical methods, 5: 961-1010.
52. Norouzi, M., Khoshgoftarmanesh, A. H., and Afyuni, M. 2015. Influence of Some Organic Fertilizers on Chemical Forms of Zinc in Soil Solid Phase in Relation to Zinc Uptake in Wheat. Journal of Science and Technology of Agriculture and Natural Resources,18(70):81-90. (In Persian with English abstract)
53. Olsen, S.R. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. United States Department of Agriculture; Washington. (No.939).
54. Page, A.L., Miller, R.H., and Keeney, D.R.1982. Methods of Analysis. Part 2. Chemical and Microbiological properties. 2nd ed. ASA. Madison, WI, USA.
55. Parkash, V., and Singh, S. 2020. Potential of biochar application to mitigate salinity stress in eggplant. Journal of Hortscience, 55(12):1946–1955.
56. Peiris, C., Nayanathara, O., M. Navarathna, C., Jayawardhana, Y., Nawalage, S., Burk, G., G. Karunanayake, A., B. Madduri, S., Vithanage, M., Kaumal, M., Mlsna, T., Hassan, E., Abeysundara, S., Ferez, F., and Gunatilake, S. 2019. The influence of three acid modifications on the physicochemical characteristics of tea-waste biochar pyrolyzed at different temperatures: a comparative study. Journal of The Royal Society of Chemistry, 9:17612-17622.
57. Rahmanian, M., and Hosseinpour A.R. 2018. Comparison of several chemical extracts for the determination of Zinc bioavailability to Sunflower heavy metal-contaminated calcareous soils. Journal of Environment and Water Engineering, 4(2): 148 – 157.
58. Rajkovich, S., Enders, A., Hanley, K., Hyland, C., Zimmerman, A.R., and Lehman, j.2012. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Journal of Biology and fertility of soils, 48: 271-284.
59. Rengel, Z. 2015. Availability of Mn, Zn and Fe in the rhizosphere. Journal of Soil Science and Plant Nutrition, 15(2):397-409.
60. Rose, M.T., Perkins, E.L., Saha, B.K., Tang, E.C., Cavagnaro, T.R., Jackson, W.R., Hapgood, K., Hoadley, A.F.A., and Patti, A.F. 2016. A slow release nitrogen fertiliser produced by simultaneous granulation and superheated steam drying of urea with brown coal. Journal of Chemical and biological technologies in agriculture, 3: 1–14.
61. Saha, B.K., Rose, M.T., Wong, V.N.L., Cavagnaro, T.R., and Patti, A.F. 2019. A slow release brown coal-urea fertiliser reduced gaseous N loss from soil and increased silver beet yield and N uptake. Journal of Science of the total environment, 649: 793–800.
62. Saravanan, V.S., Subramoniam, S.R., and Ra, S.A. 2003. Assessing in vitro solubilizatio potential of different zinc solubilizing bacterial (zsb) isolates. Braz. Journal of Microbiology, 34: 121-125
63. Shahbazi, N., Ardakani, M. R., and Ghafourian, H. 2023. Evaluate Quantitative Yield of Spinach (Spinacia oleracea L.) in Biochar and Mycorrhiza Levels under Greenhouse Conditions, Iranian Journal of Field Crop Science, 54(2): 99-112. (In Persian with English abstract)
64. Soltanpour, P. N., and Schwab, A. P. 1977. A new soil test for simultaneous extraction of macro‐ and micro‐nutrients in alkaline soils. Journal of Communications in Soil Science and Plant Analysis, 8(3):195-207.
65. Szymaneaka-Mikos, M., Schab, S., Rusek, P., Borowik, K., Bogusz, P., and Wyzinska, M. 2019.Preliminary Study of a Method for Obtaining Brown Coal and Biochar Based Granular Compound Fertilizer. Journal of Waste and Biomass Valorization, 10: 3673-3685
66. Teutscherova, N., Vazquez, E., Santana, D., Navas, M., Masaguer, A., and Benito, M. 2017.Influence of pruning waste compost maturity and biochar on c dynamics in acid soil: Incubation study. European Journal of Soil, 78: 66–74.
67. Tomczyk, A., Sokołowska, Z., and Boguta, P. 2020. Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Journal of Environmental Science and Biotechnology, 19: 191–215.
68. Van Bavel, J. 2013. The world population explosion: causes, backgrounds and projections for the future. Journal of Facts views Vision ObGyn, 5 (4):281.
69. Wang, C., Sun, R., and Huang, R.2021. Highly dispersed iron-doped biochar derived from sawdust for Fenton-like degradation of toxic dyes. Journal of Cleaner Production, 297:126681.
70. Ye, Z., Zhang, L., Huang, Q., and Tan, Z. 2019. Development of a carbon-based slow release fertilizer treated by biooil coating and study on its feedback effect on farmland application. Journal of Cleaner Production, 239:118085.