اثر كاربرد گو گر د و كود دامى بر pH خاكك و قابليت جذب عناصر غذايى كم مصرف در يكك خاكك آهكى و برگك و دانه كلزا（ رقم Hayola 401）
فاطره كريمى'، محمد على بهـنيار "و مينا شُهابى

$$
\begin{aligned}
& \text { 「「- مربى دانشگاه علوم كشـاورزى و منابع طيبى سارى }
\end{aligned}
$$

حكيده

به منظور بر سسى تأثير موّرد و كوددامى بر pH خاكك و قابليت جذب عنا

 تن كود دامى در هكتار（Ti2）حداقل pH و حداكث

 （T T T به دست آمل و بالاترين غلظت مس و و منكنز دانه به ترتيب در در تيمار د

كليد وازه ها : عناصر كم, مصرف، كلزا، كود دامى، كوكرد، pH خاكك

آزمايشهاى زيادى در محيطهاى كنترل شـده و شرايط

$$
\begin{aligned}
& \text { استفاده از گَ گرد براى كاهش pH }
\end{aligned}
$$

برخی عوامل بيماريزاى گیاهى در خاكن، الز ديرباز مورد
توجه بئوهشُگران كـّاورزى بوده ，بر بر اين اساس

در سطح خاك تخشش و همراه با مواد آلى باذفاصله به زير خاكك جايگذارى شود، عمل اكسايش گو گرد در حضور رطوبت و باكترىهاى تيوباسيلوس سريع تر انجام خو/هد گرفن (حاملى و ر جعفرى، تحقيقات سيفوئتس و لِيندمان" (19هr) نِيز نشان داد كه هصرف توأم گو گرد و ماده آلى اثر بمراتب بهنرى در

مقايسه با گو گرد تنها در كاهش pH ماكك دارد.
 هكتار كاهش قابل ملاحظهاى در pH خاكك به اندازه ه . .

تن كود دامى در هكتار بر ميزان pH خاكك تأثير
متنى دارى نداشت (تافيگك و سوداريونو ‘، 199^).
 كاربرد كود دامى جذب نيتروزن، فسفر و يتاسيم به طور قابل ملاحظهاى افزايش يافت. اغلب خاككهاى ايران به دليل قرار گرفتن در اقليم خشيك و نيمهخشَك داراى (بالاى VH خاككها به دنبال دارد. از طرف ديگر، كثور ايران با داشتن منابع عظيمى از گُ گُرد، مى تواند اين مشكل را تا حد قابل ملاحظهاى حل كند (على اصغرزاده وهمكاران، (1 rVV بدين منظور، اين تحقيق به دليل آهكى بودن خاككهاى مازندران و هايِن بودن قابليت جذب عنـ عناصر غذايى مورد نِاز گِياه در آنها، با هدف بور برسى امكان استفاده از گُ گرد و كود دامى بر كاهش pH افزايش قابليت جذب عناصر غذايى خاكى و در نتيجه افزايشّ جنذ بناصر ميكرو توسط گِياه كلزا در يكـ خاكك آهكى با بافت لوم به مرحله اجرا در آمد.

مواد و روش ها

ابن تحقيت، در يكك خاكك آهكى با بافت لوم، به صورت فاكتوريل در قالب طرح حايه كامالْ تصادفى با با با

5- Cifuentes and Lindemann 6- Taufiq and Sudaryono 7-Sengar et al.

تولِّل و سبب كاهش pH دحيط مى گُردد. همحچنين
كاهس pH خاكت يكى از روشهاى موثر هe كمبود عناصرغذايى در خاككهاى آهكى و قليايى است (كايا و همكاران' (Y (نشان دادند كه اكسايش گو گرد باعث كاهش pH خاك قليايى و افزايش غلظت فسفر قابل دسترس شد. كلباسى , همكاران' (19MA) اثر گو گرد آسياب شده را بر عملكرد محصول و مeدار جذب آهن، منيگنز، روى توسط ذرت؛ سورگّوم و مويا، مورد مطالعه قرار دادند. نتايج به دست آمده نشان داد كه ضمـن افزايشُ معنىدار عملكرد هحصولن pH خاكك كاهش و مقدار آهن، منگنز و روى قابل جذب خاكت افزايش بِافت. همحخنين مقدار جذب آهن و روى توسط گِياه افز ايش و ميزان جذب منگنز كاهش يافت. در يك آزمايش گلدانى، گو گرد (ه/ امرصد) هـراه با باكترى تيوباسيلوس قبل از كشت ذرت Tآهكى افزوده شُد. pH خاكك در تيمارهاى شاهد، تيوباسيلوس، گو گرد و گُ گرد+ تيوباسيلوس به ترتيب
 به ترتيب F/A، خاكك به ترتبب
 تيوباسيلوس منحر به كاهش pH H خاكـ و افزايش قابليت دسترسى فسفر در سنگ فسفات مىشود (نورقلىبور و
 اكسايش زيستى گو گرد در خاكت عدلتاً توسط باكترى هاى تيو باسيلوس انجام مىشود كه جمعيت اين باكترى عدم استفاده قِلى گُ گُرد و مايه تلقيح آنها بسيار ناجيز مىاششل (امطم،

1-Kaya et al.
2-Jaggi et al.
3- Kalbasi et al.
4- Salimpour et al.

خاكك و مقادير معادل..r كيلو گرم كود اوره در هكتار در سه مرحله (يكك سوم هنگام كاشت)، يكك سوم موقع رزت و يك سوم بافىمانده قبل از گلدهى) , 1..
 ترييل در هكتار بعنوان كود بايه (براساس نتايج آزمون
 گو گرد هـراه با باكترى تيوباسيلوس (r/٪) نيز با توجه به تيمارهاى كودى قبل از كاشت به خاكك افزوده شد. قبل از اعمال تيمارها، برخى خصوصيات فيزيكى و شيبيمايى خاكك و خصوصيات شيميايى كود دامى مورد استفاده تعيين گرديد كه نتايج آن در جداول اول اوب آهده آست.
 401) كاشته و بعل از سبز شدلدن به تعداد ها عدد تنك گگرديد و در طى مراحل رشد نيز براساس نياز گیاه آبيارى انجام شد. قبل از مرحله گڭدهمى، نمونه بردارى
 دانه نيز جهت انجام تجزيههاى مورد نظر بـر به آزيمايشگاه ارسال شدند و عناصر آهن، روى، مس و منغتز در بر گی
 كلزا، از خاكك هر گّدان نمونه بردارى و ميزان عناصر آهن، روى، مس و منغگنز قابل جذب و pH اندازه گِيرى شُد (احيائى و بهـهانىزاده، IVVY). سبس تجزيه و تحليل MSTATC , SPSS دادهما با استفاده از نرم افزار ارهاى و مقايسه ميانگِينها با آزمون جند آدامنهایى دانكن (در

سطع ها\%) صورت گرفت.

تيمار و جهار تكرار، به صورت گگلدانى در دانشگاه علوم كشـاورزى و منابع طبيعى سارى در سال زراعی

 همراه با Y٪ مايه تلقيح تيوباسيلوس بود. تيمارهما عبارت بودند از: (${ }^{\text {(}}$ شاهل (بدون مصرف كود گو گرد
 r...: T3 ${ }_{3}$ عنصرى در هكتار هـراه با تيوباسيلوس كلوگرم كود گَوگرد عنصرى در هكتار همراه با تيوباسيلوس،
 هكتار،

 كيلوگرم كود گو گرد عنصرى در هكتار همراه با

 عنصرى در هكتار همراه با تيوباسيلوس+ •ه تن كود
 عنصرى در هكتار همراه با تيوباسيلوس+ •ه تن كود
 عنصرى در هكتار هـراه با تيوباسيلوس+ •ه تن كود دامى در هكتار) بوده است. در هر گَلدان • ا كيلو گرم

جدول ا- نتايج تجزيه فيزيكى و شيميايى خاكك محل اجراى آزمايش ييش از كشت

$\begin{gathered} \mathrm{EC} \\ (\mathrm{dS} / \mathrm{m}) \end{gathered}$	pH	Mn	Cu	Zn	Fe	K	P	TNV	OC	Clay	Sand	Silt
		قابل جهاب (ميلى							(\%)			
- /V	v/N4	$0 / \% \wedge$	Y/V.	M	$r \cdot / r$	1A./4.	NT9	10	1/^D	11	rA	ff

جدول r- نتايج تجزيه شيميايى كود دامى مورد استفاده در آزمايش: عناصر قابل جذب (ميلى كرم بر كيلوكرم)

Mn	Cu	Zn	Fe
raiva	+11/94	M/90	MF今A

بهنيار و همكاران... ائر كاربدد گو گرد و كود دامى بر pH خاكى

نتايج و بحث

تيوباسيلوس) pH خاكك را به ميزان // • واحد كاهش داد كه البته از لحاظ آمارى اختلان معنىد دارى با تِيمار
 افزايشّ مقادير كود دامى pH خاكك بهطور معنىدارى
 كود دامى در هكتار) بهدست آهد كه البته با تيمار (OTO تن كود دامى در هكتار) در يكت سطح آمارى قرار

داشت.
مصرف توأم كود دامى و گو گرد نيز تأثير قابل ملاحظه أى بر كاهش pH خاكت داشته و تيمار كيلوگرم كود گَوگرد عنصرى در هكتار همراه با تيوباسيلوس+ •ه تن كود دامى در هكتار) موجب كا كاهش pH شده است و كمترين pH خاكك (V/FV) را به خود الختصاص داده است، البته اين تيمار با تيمار T11
گروه آمارى قرار دارد.

خاك
نتايج تجزيه واريانس ائر تيمارهاى گو گرد و و كود دامى بر ميزان pH و عناصر ميكرو قابل جذب خاري جدول Γ آمده است. هـانطورى كه ملاحظه مى شود انرات ساده گو گرد بر خاكك در سطح 1٪ و بر Cu قابل جذب خاك

 (در سطح 1٪) بود. همجنين اثرات متقابل گَو گرد و كوددامى بر pH و و قابل جذب خاكك در سطح 1٪ بر Zn Fe Fe فابل جذب در سطح ها \% معنى دار بود؛ ولى اثرات هتقابل آنها بر Cu قابل جذب خاك مینى دار

همان گونه كه در جدول \&
 Fol.) T4 كاهـ كيلو گرم كود گو گرد عنصرى در هكتار همراه با
 قابل جذب خاكك (ميلى كرم بر كيلوكرم)

مـانغِين مربعات					2رجهد	منابع تغيرات
Mn	Cu	Zn	Fe	pH	آزادى	
-/rir ${ }^{\text {ns }}$	$\cdot / \cdot r \Lambda^{\text {ns }}$	$\cdot / \Delta 1^{\text {ns }}$	F/. $\cdot r^{\text {r15 }}$	$\cdot / \cdot \cdot \gamma^{\text {ns }}$	r	تكرار
$\mathrm{v} / \mathrm{Mr} \mathrm{I}^{* *}$	-/rev	- 944^{-4}	Y $8 / .44{ }^{* *}$	- /.rv**	r	\%
	$1.40{ }^{* *}$	1/rYr**	10./718*	- /.as**	r	كوددامى
riAta"	$\cdot / / T r s^{\text {ns }}$./rs.*	$\Delta / V+1^{\circ}$	$\cdots \cdot \cdots{ }^{* *}$	9	ت\% \% \%
- Ne9	-/.v.	./1.1	r/.09	-/..r	π	خطا
1.170	9/IT	r1/99	$9 / 79$	-/09		ضريب تغيرات (درصد)

جدول غ- مقايسه ميانتين اثر متقابل كو كرد و كود دامى بر ميزان Zn و Zn ، Fe،pH قابل جذب خاكك (ميلى كرم بر كيلو مرّم)

Mn	Zn	Fe	pH	تِّهار
$r / 8^{\text {e }}$	$\cdot / \Delta r^{\mathrm{d}}$	$1 \mathrm{Mr} .{ }^{\text {d }}$	$\mathrm{V} / \mathrm{VA}^{\text {a }}$	T_{1}
$\Delta / r_{\cdot}{ }^{c}$	$\cdot / \Delta r^{\text {d }}$	$19 / 8 \mathrm{~S}^{\text {cd }}$	$v / v r^{\text {ab }}$	T_{2}
F/TM ${ }^{\text {e }}$	$1 / 199^{\circ}$	$\mathrm{r} / \cdot \mathrm{r}^{\text {e }}$	$v / V^{\text {rab }}$	T_{3}
$0 / 10^{\text {c }}$	$1 / 9{ }^{\text {ab }}$	19/A..$^{\text {cd }}$	$\mathrm{V} / \mathrm{Fr} \mathrm{r}^{2-\mathrm{d}}$	T_{4}
$\mathrm{v} / \mathrm{r} \cdot{ }^{\mathrm{d}}$	1/F. ${ }^{\text {bc }}$	r. $/ 9 \mathrm{C}^{\mathrm{c}}$	$\mathrm{V} / \mathrm{N} \cdot{ }^{\text {a-c }}$	T 5
$\mathrm{N} / \mathrm{c}^{\mathrm{cd}}$	$1 / \Delta f^{\text {a }}$	19/4. $\mathrm{cd}^{\text {ch }}$	$\mathrm{V} / 90^{\text {b-d }}$	T_{6}
$\mathrm{A} / \Delta \mathrm{s}^{\mathrm{c}}$	$1 / 4 F^{\text {bc }}$	r./ar ${ }^{\text {c }}$	$\mathrm{V} / 9 \mathrm{c}^{\mathrm{b}-\mathrm{d}}$	T_{7}
$9 / \mathrm{rv}{ }^{\text {c }}$	$1 / 49^{8}$	$r \mathrm{r} / \mathrm{ra}^{\text {b }}$	$\mathrm{V} / \Delta \mathrm{N}^{\text {de }}$	T_{8}
$11 / .1{ }^{\text {b }}$	$1 / \pi r^{\text {c }}$	ra/9. ${ }^{\text {b }}$	V/9..$^{\text {cee }}$	T_{9}
$1 . / 9 r^{\text {b }}$	$1 / \mathrm{rre}$	rT/ $/ 0^{\text {b }}$	$\mathrm{V} / 9 \mathrm{~s}^{\mathrm{ad}}$	T_{10}
$17 / \Delta 9^{4}$	$1 / 8 r^{3}$	$r g / \mathrm{Na}^{\text {a }}$	V/bref	T_{11}
(r/r $)^{\text {a }}$	$1 / 47^{\text {a }}$	TV/a. ${ }^{\text {a }}$	$\mathrm{v} / \mathrm{fv} \mathrm{f}^{\mathrm{f}}$	T_{12}

توأم گُ گرد , كود دامى pH خاكك را بطور قابل

 ميلى گرم بر كيلو گرم در تيـار گو گرد عنصرى در هكتار همراه با تيوباسيلوس) بهدست آهد كه البته با تيهار داشت. هـمخنين سطوح مختلف كود دامى تأثير مهنى-
 تيمار عدم مصرف كود دامى، Fe قابل جذ ما

 جذب در مقايسهه با تيمار شاهل شـده است و با تِيمارهاى

كايا و همكاران (Y (Y) نيز گزارش كرد مند كه با با كاربرد گو گرد عنصرى در خاكك تحت كشت لوبيا و ذرت، pH خاكك از N/TY در تيمار شاهد به ترتيب به V/D0, V/Fa كاهش يافت؛ در نتيجه منجر به افزايش غلظت عناصر غذايى در اين گًاهان و غلظت عناصر
 نتايج با يافته هاى ارمان و كابالان' ' (Y... همكاران' ${ }^{\text {(}}$ گرگگرد بددليل ظرفيت اكـيـيه شدن و توليد
 حداقل در مقياس كوجكك اطر اف ذرات خرات خود دارا بوده، از سوى ديگر اثرات گو گرد در خاكثهاى آهكى كند بوده و مصرف آن زمانى موثر است كه عمل تهويه بخوبى انجام گيرد و ميزان مواد آلى نيز فراوان بان باند؛ اما در خاككهاى آهكى بدعلت كمبود مواد آلى، فعاليت ريزجانداران موثر بر اكسـايش گو گرد كم بوده، مصرف

[^0]غلظت مس از Y/VI ميلى گرم بر كيلو گرم در تيـار ششاهد به • P/ تيدارهاى
 كوددامى، pH خاكث را باطور قابل ملاحظهاى كاهش داده كه در نتيجه منجر به افزايش قابليت جذا جـب غذايى خاكث شده است و تيمارهاى
 ي Mn , Cu

نتايج تجزيه واريانس اندازهگيرى عناصر در بر گَ كلزا

 حالى كه اثرات متقابل گو گرد و كود دامى فقط بر ميزان مس و منیتز بر گی منـى دار بوده است.
 هكتار، بيشّترين غلظت Zn , Fe بر گُ را موجب شُد

 نشان داد كه بهعلت شُرايط اسيدى كه در نتيجه اكـبداسيون گو گرد بـو جود مى آيد، فابليت دسترسى عناصر غذايى Mn , Cu ، Zn ،Fe توسط گِياه نخود افزايس بافت. تأثير مثت گُرگّرد بر رشد، عملكرد و و

 . (r..^A.

2-Islam et al.
3- Bahrathi and Poongothai
4- Mathew and Karian
5- Togay et al.
 (جـدول F). نتايج تحقيقات تافيك و س سوداريونو (199A) pH نشان داد كه كاربرد گو گرد عنصرى موجب كاهش خاكك و افزايش Fe قابل جذب خاكي گُ گرديد. كاربرد
 تأئير معنى دارى بر كاهش pH ماهي

 هكتار) و

 يادآورى است كه با مصرف توأم كود دامى و گر گردم،

 در يك سطح آمارى قرار داشت و منجر به افزايش

 سعودى انجام شد، ميُخضص شد كه افزودن گو گرد

 گگ, گرد , كوددامى تأثير هعنى دارى نداشته است، به
 (T/A (

 دارى افزايشُ يافت به گونه اي كه با كاربرد كود دامى

[^1]جدوله- مقايسه ميانثين تأثير سظوح مختلف توكرد بر ميزان Cu قابل جذب خاكك (ميلى كرم بر كيلوكرم)

Cu	
${ }^{b_{Y / V T}}$.
${ }^{\text {abr }} / 49$	$10 .$.
${ }^{3} \mathrm{r} / \mathrm{F} \mathrm{F}$	r...
${ }^{2} /$ /4	Fo..

* حرف مشتر ك نشاندهنده اين امست كه ميان نيمار ها از لحاظ آمارى اختلاف يعنى دارى در سطح ه درصـد وجود ندارد.

جدول - مقايسه ميانتين تأثير سطوح مختلف كودداميى بر Cu قابل جذب خاكك (ميلى ترم بر كيلوكرم)

Cu	كود دالى (تن در هكانكار)
${ }^{\mathrm{b}_{\mathrm{r}, \mathrm{M}}}$.
${ }^{\mathrm{b}} \mathrm{r} / \mathrm{A}$.	ros
27/19	8.

"حرف مشتركت نشاندهنده اين است كه ميان تيهار ها از لحاظ آمارى اختالف يشنى دارى در سطح هدرصـد وجو د ندارد.

مبانزين مربعات				درجه آزادى	منابع تنيرات
Mn	Cu	Zn	Fe		
r./Astrs	T//F9 ${ }^{\text {ns }}$	F/A. $\mathrm{r}^{\text {ns }}$	r../.tr ${ }^{\text {ns }}$	「	تكرار
1r1/94t"	+9,rav"	re/rif	Ifineria"	r	\%ركر,
v.F/gre"	r.1/rav*	17f/rat ${ }^{\text {as }}$	iwa/ar"	r	كود20ى
rravis	9/FM ${ }^{\text {\% }}$	$9 / 7 T 5^{\text {ns }}$	$\mathrm{va} / .4 \mathrm{q}^{\text {ns }}$	4	\%
9/Far	r/99\%	11/Iva	r.a,re.	π	خ
F/Q	$11 / \mathrm{r}$.	$9 / r r$	1./r1		ضريب نغيرات (درصد)

مصرف توأم گر گرد و كوددامى، بيشترين غلظت مس مس
 r... تيوباسيلوس+ •ه تن كود دامى در هكتار (T T ${ }^{\text {(}}$) بدست Tآمد كه در مقايسه با تيمارشاهد |فزايش يافت. بالاترين غلظت منگگتز برگّ نيز متعلق به تيمار Tم يك سطح Tمارى قرار دارد و نسبت به تيهار شاهد منيگنز

ترتيب در تيمارهاى هr و . •ه تن كود دامى در هكتار
 غلظت Zn برگی شد ولى اين افزايش از لحاظ آمارى
 مالاحظه می گردد، در خاكك بدون دصرف كود درد دامى، با كاربرد گو گرد غلظت مس بر گـث از تيمارهای هז و وه ها تن كود دامى در هكتار افز ايش يافت.در

شكل ا- تأثير سطوح مختلف كود گوكّردى بر غلظت آهن و روى بر

شكل r- تأثير سطوح مختلف كوددامى بر غلظت آهن و روى بر كى

سطوح گو گرد، غلظت اين عناصر در دانه افز يسُ يِافته و

 . (شكا بل

نتايج تجزيه واريانس عناصر در دانه گِياه كلزا نشان
، Fe داد كه اثرات ساده گو گرد و كوددامى برغلظت ورانس دانه معنى دار بوده؛ ولى اثرات متقابل , Cu C , Zn كوددامى و گَوگرد بر غلظت Zn , Fe دانه تأثير معنى دازى نداشته است (جـدول 9). بهطر رى كه با افزايش

جدول^- مقايسه ميانتين اثر متقابل كوكرد و كود دامى بر غلظت Cu و Mn بركى كلزا (ميلى كرم بو كيلوكرم)

Mn	Cu	تيهار
FA/vi ${ }^{\text {e }}$	$9 / \cdot r^{\text {i }}$	T_{1}
$09 / 01^{\text {d }}$	$11 / 0^{\mathrm{g}}$	T_{2}
$\Delta \mathrm{V} / \Delta \mathrm{r}^{\text {d }}$	1./40 ${ }^{\text {h }}$	T_{3}
s $1 / 1 / \mathrm{rv} \mathrm{r}^{\mathrm{b}-\mathrm{d}}$	$15 / .9{ }^{\text {f }}$	T_{4}
$\Delta \mathrm{A} / \mathrm{q}^{\text {cd }}$	$1.1 . r^{\text {h }}$	T_{5}
$91 / \Delta 9^{\mathrm{b}-\mathrm{d}}$	$18 / Y^{\text {e }}$	T_{6}
$9 \cdot / r q^{\mathrm{b}-\mathrm{d}}$	19/9. ${ }^{\text {d }}$	T_{7}
$9 \mathrm{r} / 9 r^{\text {a-e }}$	1V/Vr ${ }^{\text {c }}$	T_{8}
$9 \Delta / r f^{\text {ab }}$	$19 / 79^{\text {d }}$	T_{9}
$99 / 7 A^{\text {a }}$	iv/ar ${ }^{\text {c }}$	T_{10}
$\mathrm{vr} / \mathrm{VA}{ }^{\text {a }}$	r./Ar ${ }^{\text {a }}$	T_{11}
$\mathrm{Vr} / \cdot \mathrm{r}^{\text {a }}$	W/F/F ${ }^{\text {b }}$	T_{12}

جدول (ميلى كرم بر كيلوكرم)

مبانگّين مربات

Mn	Cu	Zn	Fe	آزادى	
$\cdot / \cdot 99^{\mathrm{ns}}$	$\cdot / 94)^{\text {n5 }}$	r/M19 ${ }^{\text {ns }}$	$\|\mathrm{V} / \mathrm{A}\|)^{\mathrm{ns}}$	r	تكرار
Arofr ${ }^{+}$	$\mathrm{F}_{\mathrm{NA}}{ }^{\prime *}$	N/яAr"	reg/act	r	كو گرد
$1 \cdot v / \pi 4 r^{n *}$	*9/0FF**	v/iva*	$\operatorname{siv/\cdot \lambda }$	r	كود3امى
9/VOI	T/Mra**	T/AVF ${ }^{\text {ns }}$	19/ves ${ }^{\text {ns }}$	9	گ, گ, گ, \times كوددامى
r/019	-/ra.	l/av.	N/A.V	π	خ
F / V	$9 / \mathrm{V}$.	r/av	9/גT		خربب تغير\|ت (درصد)

كود كوكردى (كيلوكرم در هكتار)

بهنيار و همكاران... ائر كاربرد گُ گرد و كود دامى بر pH خاكى

شكل £- تأثير سطوح مختلف كوددامى بر غلظت آهن و روى دانه

منظگت دانه ((Tr/V9 ميلى گرم بر كيلو گرم) نيز به تيمار شاهد تعلق داشت (جدول • ا). حامدى و جعفرى (ITNY)
 در معايسهـ با كاربرد گگ گرد همر اه با باكترى تيوباسيلو موجب تأئر بيـّترى در افزايش غلظت عناصر غذايـى در دانه كلزا گرديد.

نتيجهيّيرى

 طور قابل ملاحظهاى كاهش يافت. از سوى ديگُر مصرف گو گُرد بخصوص همراه با كود دامى به دلبل افزايش اكسايش زيستى گرگرد تأثير بمراتب بهترى در مقايسه با
仿 عنصرى در هكتار همراه با تيوباسيلوس+ •ه تا تن كود د دامى در هكتار بددست آمـ؛ هدجنين مصرف توأم گر گر گرد و كود دامى به دليل تأثير معنددارى كه در كاهش pH داشته موجب افزا ايش قابليت جذب عناصر آهن، روى، مس و منگگن در خاكى و در نهايت منجر به افزايش غلظت اين عناصر در بر گی و دانه كلزا گرديده است، از طرفى كود دامى خود نيز داراى عناصر غذايى است كه بتدريج آزاد

خيُوهشُغران مختلف بيان كردند كه افزايشُ جذب
روى در واكثش به گو گرد مـكـن است بهعلت افزايس سطح ريسُه در ائر فراهمى گُو گرد بوده است كه در در
 همكاران'،
 نيز بهطرر معنىدارى افزايشُ يافت، بهطورى كه با با مصرف

 يافت (شككل٪)
 ميزان مس و منگگّز دانه تأثير معنىدارى داشتـهـ و بالاترين غلظت مس دانه (IIVY الميلى گرم بر كيلو گرم) در تيمار

 Tاختصاص داد كه با تيمارهاى Tد در يكت سطح آمارى قرار داشت و كمترين ميزان

1- Babhulkar et al
2- Sharma
مهندسى زراعى (مجله علمى كشاورزى)، جلد هr شماره ا، تابستان | |rq|

$$
\begin{aligned}
& \text { شا شود. }
\end{aligned}
$$

جدول • ا- مقايسه ميانگين اثر متقابل توگرد و كود دامى بر غلظت Cu و

دانه كلزا (ميلى كرم بو كيلوكو م)

Mn	Cu	تِهار
$\mathrm{m} / \mathrm{V} 9^{\text {d }}$	$9 / 4 V^{f}$	T_{1}
$r \Delta / r v^{\text {ed }}$	$\mathrm{N} \cdot \mathrm{~F}^{\mathrm{de}}$	T_{2}
$r g / a a^{b-d}$	V / V. ${ }^{\text {e }}$	T_{3}
$\mathrm{rN} \cdot \mathrm{s}^{\mathrm{bc}}$	$\mathrm{N} / \mathrm{Y} \mathrm{V}^{\text {ede }}$	T_{4}
$r a / r q^{a b}$	$\mathrm{M} / \mathrm{V}^{\text {ed }}$	T_{5}
$F \cdot / 49^{\text {ab }}$	$\mathrm{V} / \mathrm{s}^{\mathrm{e}}$	T_{6}
$r a / \Delta \Delta^{a b}$	Q/. $/ \mathrm{r}^{\mathrm{c}}$	T_{7}
$F \cdot / r q^{a b}$	$1.194^{\text {b }}$	T8
$f \cdot / r \cdot{ }^{\text {ab }}$	$1.190^{\text {b }}$	T9
Fr/Af ${ }^{\text {a }}$	$1.19 \mathrm{c}^{\mathrm{b}}$	T_{10}
$f \cdot / \Delta r^{2 b}$	$11 / 89^{\text {a }}$	T_{11}
F. $119^{\text {ab }}$	$1.190^{\text {ab }}$	T_{12}

منابع

 كرج، ايران.

 كرج، اير ان. اV اصفحه.
rوكيفى كلزا. مجموعه مقالات دومين سمينار علمى- كاربردى دانههاى روغنى و روغن هاى نباتى ايران. IIV-IIr

$$
\begin{aligned}
& \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { va. - 99:(1)IV خاكهاى مختلف. مجله علوم خاكت و آبي }
\end{aligned}
$$

8. Alfalih, A.M. 1996. Sulphur oxidation in Saudi Arabian agricultural soils. Qatar University Science Journal, 16(2):297-302.
9. Babhulkar, M.S., Kar, D., Badole, W.P., and Balpand, S.S. 2000. Effect of sulphur and Zn on yield, quality and nutrient uptake by safflower in Vertisol. Journal of the Indian Society of Soil Science, 48:541-543.
10. Bharathi, C., and Poongothai, S. 2008. Direct and residual effect of sulphur on growth, nutrient uptake, yield and its use efficiency in maize and subsequent greengram. Research Journal of Agriculture and Biological Science, 4(5):368-372.
11. Cifuentes, F.R., and Lindemann, W.C. 1993. Organic matter stimulation of elemental sulfur oxidation in a calcareous soils. Soil Science Society of America Journal, 27:727-731.
12. Erdal, I., Kepenek, K., and Kizilgoz, I. 2006. Effect of elemental sulphur and grown in calcareous soil. Biology Agriculture Horticulture, 23:263-272.
13. Islam, M., Safdar, A., and Hayat, A. 2009. Effect of integrated application of phosphorus and sulphur on yield and micronutrient uptake by chickpea (Cicer arietinum). International Journal of Agriculture and Biology, 11:33-38.
14. Jaggi, R.C., Aulakh, M.S., and Sharma, R. 2005. Impacts of elemental S applied under various temperature and moisture regimes on pH and available P in acidic, neutral and alkaline soils. Biology and Fertility of Soil, 41: 52-58.
15. Kalbasi, M., Filsoof, F., and Rezainejad, Y. 1988. Effect of sulfur treatment on yield and uptake of Fe, Zn and Mn by corn, sorghum and soybean. Journal of Plant Nutrition, 9(3-7):1001-1007.
16. Kaya, M., Kucukyumuk, Z., and Erdal, I. 2009. Effects of elemental sulfur and sulfur-containing waste on nutrient concentrations and growth on calcareous soil. African Journal of Biotechnology, 8(18):4481-4489.
17. Mathew, T., and Kurian, T.M. 2003. Residual effect of sulphur nutrition on the ratoon crop of sugarcane. Sugar Technology, 5(4):315-316
18. Orman, S., and Kaplan, M. 2000. Effects of two different sulfur sources on pH of calcareous soils. Akdeniz University Journal of the Faculty of Agriculture, 13:171179.
1.4
مهندسى زراعى (مجله علمى كشاورزى)، جلد هr شـماره (، تابستان اهجr,
19. Salimpour, S., Khavazi, K., Nadian, H., Besharati, H., and Miransari, M. 2010. Enhancing phosphorous availability to canola (Brassica nupus L.) using P solubilizing and sulfur oxidizing bacteria. Australian Journal of Crop Science, 4(5):330-334.
20. Sengar, S.S., Wade, L.J., Baghel, S.S., Sing, R.K., and Sing, G. 2000. Effect of nutrient management on rice (Oryza sativa) in rainfed lowland of southeast Madhya Pradesh. Indian Journal of Agronomy, 45(2): 315-322.
21. Sharma, U.C. 1990. Effect of Zn and S on nutrient uptake and yield of mustard. Journal of the Indian Society of Soil Science, 38:696-701.
22. Taufiq, A., and Sudaryono, A. 1998. Sulfur and organic manure fertilization of groundnut in red Alfisol in Indonesia. Research Institute for Legume and Tuber Crops, IAN 18: 39-40.
23. Togay, Y., Togay, N., Fatihcig Erman, M., and Esan Celen, A. 2008. The effect of sulphur applications on nutrient composition yield and some yield component of barley (Hordeum Vulgare L.). African Journal of Biotechnology, 7(18):3255-3260.

The Effect of Sulfur and Cattle Manure Applications on pH and Micronutrient Availability in a Calcareous Soil and Leaf and Grain of Canola (Hayola 401)

F. Karimi ${ }^{1}$, M. A. Bahmanyar ${ }^{2+}$ and M. Shahabi ${ }^{3}$
1. M.Sc. student of Soil Science, Sari Agricultural Sciences and Natural Resources University, Sari I. R. Iran Atena gholipur@yahoo.com
2. *Corresponding Author: Associate Professor of Soil Science, Sari Agricultural Sciences and Natural Resources University, Sari I. R. Iran
3. Instructor of Soil Science, Sari Agricultural Sciences and Natural Resources University, Sari I. R. Iran

Received: 21 September 2011
Accepted: 19 September 2012

Abstract

In order to investigate the effect of sulfur (S) and cattle manure (CM) on pH and micronutrient availability in a calcareous soil, a pot experiment was conducted as factorial based on completely randomized design with four replications during 20092010 cropping season. Treatments included three CM levels (0,25 and 50 ton ha ${ }^{-1}$) and four S levels $\left(0,1500,3000\right.$ and $\left.4500 \mathrm{~kg} \mathrm{ha}^{-1}\right)$ with 2% inoculation Thiobacillus. Results indicated that the lowest amount of soil pH and the highest amounts of available Fe and Zn in soil were obtained in $4500 \mathrm{~kg} \mathrm{~S}+50$ ton $\mathrm{CM} \mathrm{ha}{ }^{-1}\left(\mathrm{~T}_{12}\right)$ treatment. But the interaction effect between S and CM on the amounts of available Cu in soil and Fe and Zn in leaf and seed was not significant. Also, the application of S and CM had a significant effect on the amounts of Cu and Mn in leaves and seeds. The highest amount of Cu and Mn concentration in leaves were obtained in $3000 \mathrm{~kg} \mathrm{~S}+50$ ton $\mathrm{CM} \mathrm{ha}\left(\mathrm{T}_{11}\right)$ treatment. In addition, the highest amount of Cu and Mn in seed was determined in 1500 $\mathrm{kg} \mathrm{S}+50$ ton CM ha ${ }^{-1}\left(\mathrm{~T}_{10}\right)$ treatment and $\left(\mathrm{T}_{11}\right)$ treatment, respectively. Therefore, application of $4500 \mathrm{~kg} \mathrm{~S}+50$ ton $\mathrm{CM} \mathrm{ha}^{-1}\left(\mathrm{~T}_{12}\right)$ had a significant effect in reducing soil pH , thereby increasing micronutrient availability in soil and, ultimately, leading to increased concentrations of these nutrients in canola leaves and seeds.

Keywords: Micronutrients, Canola, Cattle manure, Sulfur, Soil pH

[^0]: 1- Orman and Kaplan
 2- Erdal et al.

[^1]: 1- Alfalih

