نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار مکانیزاسیون کشاورزی، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه زنجان زنجان، ایران

2 استاد مکانیک بیوسیستم، گروه مهندسی ماشین‌های کشاورزی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران

3 دانشیار مکانیک بیوسیستم، گروه مهندسی ماشین‌های کشاورزی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران

چکیده

با توجه به نقش اساسی بخش کشاورزی در اقتصاد ایران، بررسی و شناسایی راهکارهای تولید بهینه با نگاه اقتصادی و با بهره گیری از روش‌های مدل‌سازی هوشمند از اهمیت زیادی برخوردار است. هدف این مطالعه مح اسبه شاخص‌های اقتصادی در تولید محصول چغندرقند در استان همدان، به‌کارگیری روش تحلیل پوششی داده‌ها در شناسایی واحدهای کارا، و استفاده از روش انفیس در پیش‌بینی شاخص سود به هزینه از روی مقدار مصرف نهاده‌های تولید می‌باشد. داده‌های این مطالعه از بررسی 88 مزرعه به دست آمد. نتایج نشان داد نیروی انسانی، اجاره زمین و آب مصرفی بیشترین هزینه‌ها را به خود اختصاص داده‌اند. سهم هزینه متغیر 84 درصد و سهم هزینه ثابت 16 درصد از کل هزینه‌ها می‌باشد. براساس نتایج DEA، از تعداد 88 کشاورز مورد مطالعه، تعداد 19 کشاورز با مدل CCR و 55 کشاورز با مدل BCC کارا شناخته شدند. میانگین کارایی فنی، کارایی فنی خالص و کارایی مقیاس به ترتیب 73/0، 94/0 و 77/0 به‌دست آمد. با معیار قرار دادن واحدهای کارا و الگوبرداری از آن‌ها، می‌توان با ثابت نگه داشتن عملکرد محصول، به میزان 64/51 درصد کاهش هزینه داشت. نتایج مدل‌سازی نشان داد انفیس سه سطحی قادر است شاخص اقتصادی را با ضریب تبیین 96/0 از روی نهاده‌های مصرفی پیش‌بینی کند. بنابراین انفیس را می‌توان به عنوان ابزاری مفید برای کمک به پیش‌بینی شاخص‌های اقتصادی سیستم‌های تولید کشاورزی پیشنهاد کرد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Economic optimization of sugar beet production with Data Envelopment Analysis and application of Adaptive Neuro-Fuzzy Inference System for modeling benefit-cost index

نویسندگان [English]

  • Majid Namdari 1
  • Shahin Rafiee 2
  • Soleiman Hosseinpour 3

1 Assistant Professor, Department of Plant Production and Genetic, Faculty of Agriculture, University of Zanjan

2 Professor, Department of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, University of Tehran

3 Associate Professor, Department of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, University of Tehran

چکیده [English]

Introduction Considering the essential role of the agricultural sector in Iran's economy, it is very important to investigate and identify optimal production methods from an economic point of view. The purpose of this study is to calculate the economic indicators of sugar beet production, use of the Data Envelopment Analysis (DEA) method to identify the efficient units, and use of the Adaptive Neuro-Fuzzy Inference System (ANFIS) method to predict the benefit-cost index based on the consumption of production inputs in Hamedan province.
Materials and Methods In this study, 88 farmers were studied. Data were collected from Hamadan province, Iran. Inputs included labor, machinery, diesel fuel, electricity, seeds, chemicals, farmyard manure, chemical fertilizers, and irrigation water. The indices of gross revenue, net income, gross income, economical productivity and benefit-cost ratio were calculated using information obtained from farmers. Then technical, pure technical, scale and cross efficiencies were calculated using CCR and BCC models for farmers. The benefit-to-cost ratio was considered as the economic index criterion in modeling with ANFIS. In this modeling, value of various inputs used for sugar beet production were selected as input variables. Various membership functions such as Triangular, Trapezoidal, Gaussian, Logarithmic and Gbell functions were tested. Also, different configurations were examined to provide the best configuration that predicts the model. In order to measure the accuracy of ANFIS models for estimating the observed values some quality parameters including the coefficient of determination (R2), root mean square error (RMSE) the mean relative error (RME) between the observed and the predicted values were applied to evaluate the performance of different models with different configurations.
Results and Discussion The results showed that most of the production costs were in the category of variable costs. Variable costs account for 84% and fixed costs account for 16% of the total costs of sugar beet production. Cost of labor, water consumption, and land rent have the largest share of costs among all fixed and variable costs. The indexes of gross income, net income and benefit-cost ratio were obtained as 1188.99 $ha-1, 694.28 $ha-1 and 1.34, respectively.
The results of data envelopment analysis showed that from the total of 88 farmers, considered for the analysis, 19 and 55 farmers were found to be technically and pure technically efficient, respectively. In other words, the farmers who are identified with the BCC model are more efficient than the farmers who are identified with the CCR model. Average technical efficiency, net technical efficiency, and scale efficiency were calculated as 0.73, 0.94 and 0.77, respectively.
Data envelopment analysis indicates that farmers should focus on increasing the degree of mechanization of production by reducing the cost of human labor. The saving percentage of total input costs in the CCR model is higher than the BCC model. Optimization of input consumption in sugar beet production decreased the cost by 51.64% in the CCR model and by 28.27% in the BBC model. To predict the economic performance using inputs in sugar beet production, the three-layer arrangement with seven parameters obtained the best results. The modeled ANFIS is able to predict economic performance values with R2 of 0.96. This prediction is acceptable due to its high coefficient of determination and can be used in modeling.
Conclusion Considering the high share of variable costs compared to fixed costs, it can be concluded that by applying appropriate management methods, the total costs of sugar beet production in Hamadan province can be significantly reduced. By mechanizing farms, the variable costs of farms can be reduced significantly. If the cultivated land does not have a problem with weeds, the use of conventional seeds can also reduce production costs. The DEA results showed that based on the CCR model, about 78.4% of farmers produce outside the efficiency and by providing management solutions taken from efficient DMUs (the recommendations of this study), they can reduce consumption costs by keeping product yield constant. The results of multi-level ANFIS implementation showed that the three-level ANFIS structure including four ANFIS models in the first level, two ANFIS models in the second level and a final model in the third level have the best performance for benefit-cost ratio prediction. It is proposed that implementation of multi-level ANFIS is a useful tool in helping to predict the economic indices of agricultural production systems.

کلیدواژه‌ها [English]

  • ANFIS
  • Artificial Intelligence
  • Efficiency
  • Inputs
  • Optimization
  1. Akram, A., Khanali, M., Golchein, S., and Hosseinzadeh Bndbafha, H. 2017. Optimization of energy consumption in the production of warm water fish using the data envelopment analysis and genetic algorithm. Journal of Fisheries, 69(4): 431-442. (In Persian)
  2. Asgharipour, M.R., Mondani, F., and Riahinia, S. 2012. Energy use efficiency and economic analysis of sugar beet production system in Iran: A case study in Khorasan Razavi province. Energy, 44: 1078-1084.
  3. Banaeian, N., Zangeneh, M., and Omid, M. 2010. Energy use efficiency for walnut producers using data envelopment analysis (DEA). Australian Journal of Crop Science, 4(5): 359-362.
  4. Brouwer, C., Prins, K., Kay, M., and Heibloem, M. 1988. Irrigation water management: irrigation methods. Training manual, 9(5): 5-7.
  5. Cochran, W.G. 1977. Sampling Techniques. John Wiley and Sons. New York. pp: 203.
  6. Darouich, H.M., Pedras, C.M., Gonçalves, J.M., and Pereira, L.S. 2014. Drip vs. surface irrigation: A comparison focussing on water saving and economic returns using multicriteria analysis applied to cotton. Biosystems Engineering, 122: 74-90.
  7. Darouich, H., Cameira, M.R., Gonçalves, J.M., Paredes, P., and Pereira, L.S. 2017. Comparing sprinkler and surface irrigation for wheat using multi-criteria analysis: water saving vs. economic returns. Water, 9(1): 50.
  8. Elhami, B., Akram, A., Khanali, M., and Mousavi-Avval, S.H. 2016. Application of ANFIS and linear regression models to analyze the energy and economics of lentil and chickpea production in Iran. Energy Equipment and Systems, 4(2): 255-270.
  9. Erdal, G., Esengun, K., Erdal, H., and Gunduz, O. 2007. Energy use and economical analysis of sugar beet production in Tokat province of Turkey. Energy, 32: 35-41.
  10. Fahimifard, S.M., Salarpour, M., Sabouhi, M., and Shirzady, S. 2009. Application of ANFIS to agricultural economic variables forecasting case study: poultry retail price. Journal of Artificial Intelligence, 2(2): 65-72.
  11. Khoshnevisan, B., Rafiee, S., Iqbal, J., Shamshirband, S., Omid, M., Badrul, A.N., and Abdul, W.A. 2015. A comparative study between artificial neural networks and adaptive neuro-fuzzy inference systems for modeling energy consumption in greenhouse tomato production: A case study in Isfahan province. Journal of Agricultural Science and Technology, 17: 49-62
  12. Khoshnevisan, B., Rafiee, S., Omid, M. and Mousazadeh, H. 2014. Prediction of potato yield based on energy inputs using multi-layer adaptive neuro-fuzzy inference system. Measurement, 47: 521–530.
  13. Kiani, M.K.D., Ghobadian, B., Tavakoli, T., Nikbakht, A.M., and Najafi, G. 2010. Application of artificial neural networks for the prediction of performance and exhaust emissions in SI engine using ethanol-gasoline blends. Energy, 35(1): 65-69.
  14. Kisi, O., and Shiri, J. 2014. Prediction of long‐term monthly air temperature using geographical inputs. International Journal of Climatology, 34(1): 179-186.
  15. Mousavi-Avval, S.H., Rafiee, S., Sharifi, M., Hosseinpour, S., and Shah, A. 2017a. Combined application of life cycle assessment and adaptive neuro-fuzzy inference system for modeling energy and environmental emissions of oilseed production. Renewable and Sustainable Energy Reviews, 78: 807-820.
  16. Mousavi-Avval, S.H., Rafiee, S., Sharifi, M., Hosseinpour, S., Notarnicola, B., Tassielli, G., and Renzulli, P.A. 2017b. Application of multi-objective genetic algorithms for optimization of energy, economics and environmental life cycle assessment in oilseed production. Journal of Cleaner Production, 140: 804-815.
  17. Nabavi-Pelesaraei, A., Abdi, R., Rafiee, S., and Mobtaker, H.G. 2014. Optimization of energy required and greenhouse gas emissions analysis for orange producers using data envelopment analysis approach. Journal of Cleaner Production, 65: 311–317.
  18. Nabavi-Pelesaraei, A., Rafiee, S., Mohtasebi, S.S., Hosseinzadeh-Bandbafha, H., and Chau, K.W. 2019. Comprehensive model of energy, environmental impacts and economic in rice milling factories by coupling adaptive neuro-fuzzy inference system and life cycle assessment. Journal of cleaner production, 217: 742-756.
  19. Naderloo, L., Alimardani, R., Omid, M., Sarmadian, F., Javadikia, P., Torabi, M.Y., and Alimardani, F. 2012. Application of ANFIS to predict crop yield based on different energy inputs. Measurement, 45(6): 1406-1413.
  20. Pour-Ali Baba, A., Shiri, J., Kisi, O., Fard, A.F., Kim, S., and Amini, R. 2013. Estimating daily reference evapotranspiration using available and estimated climatic data by adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN). Hydrology Research, 44(1): 131-146.
  21. Rahimyan, B. 2015. Determination of economic, energy and environmental indicators of some crops (sugar beet, wheat and pea) in West Azarbaijan Provine (Boukan Region) using computional intelligence techniques. Faculty of Agricultural Engineering and Technology. University of Tehran, Tehran, Iran. (in Persian)
  22. Sefeedpari, P., Rafiee, S., Akram, A., Chau, K.W., and Pishgar-Komleh, S.H. 2016. Prophesying egg production based on energy consumption using multi-layered adaptive neural fuzzy inference system approach. Computers and Electronics in Agriculture, 131: 10-19.
  23. Shahbazi, A., Khaliqi Sygarodi, S., Malekian, A., and Salajegheh, A. 2014. Selection of the best empirical formula to estimate time of concentration in urban watersheds (Case study: Mahdasht town). Journal of Range and Watershed Management, 67(3): 419-435. (In Persian)
  24. ShirvaniBoroujeni, M., Soleimani M., and Zaki Dizaji H. 2020. Evaluation of environmental impacts and energy use of sugar beet production and predicting the yield using ANN and ANFIS in Chaharmahal and Bakhtiari province of Iran. Journal of Researches in Mechanics of Agricultural Machinery, 9(2): 107-118. (In Persian)
  25. Yazdani, S., and Rahimi, R. 2013. Evaluation the Efficiency of Sugar beet Production in Qazvin Plain. Journal of Sugar Beet, 28(2): 221-209. (In Persian with English abstract)