نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی ارشد، گروه مهندسی مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه ایلام

2 دانشیار، گروه مهندسی مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه ایلام

3 استادیار ،گروه مهندسی مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه ایلام

4 استادیار گروه مهندسی مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه شهید چمران اهواز

چکیده

بیوگاز یکی از منابع انرژی تجدیدپذیر و مهم می‌باشد که می‌توان آن را با استفاده از مواد ضایعاتی نظیر مواد آلی کربن‌دار از منابعی چون پسماند دامی، کشاورزی، صنعتی و خانگی تولید کرد. بر آن اساس در تحقیق حاضر به بررسی تأثیر پوست باقلا و لرزش هاضم بر میزان تولید بیوگاز و اجزاء تشکیل‌دهنده آن پرداخته شد. برای این منظور، 9 هاضم با حجم یکسان حدود 14 لیتر با قابلیت اندازه‌گیری pH و حجم گاز تولیدی آماده‌سازی شد. آزمایشات در شرایط کنترل شده با دمای میانگین 28-30 درجه سلسیوس با بارگذاری هاضم‌ها به مقدار 7 کیلوگرم پوست باقلا و آب با نسبت 1:1 انجام شد. آزمایش در سه تکرار و با اثر عامل هاضم‌های ثابت، هاضم‌های با لرزش هر سه روز یکبار و هاضم‌های با لرزش هر روز انجام گرفت. مدت زمان نگهداری فرآیند تا پایان 30 روز تعیین گردید. در طول فرآیند، تغییرات pH و فشار گاز هر سه روز یکبار ثبت گردید و برای تعیین میزان و اجزاء تشکیل‌دهنده گازها هر ده روز یکبار داده‌گیری انجام گرفت. برای شناسایی اجزاء تشکیل‌دهنده بیوگاز، از دستگاه کروماتوگرافی استفاده شد. نتایج حاکی از تأثیر مقدار لرزش بر میزان PH درون هاضم داشت. بیشترین مقدار مربوط به هاضم با لرزش هر روز بوده و تغییرات در این هاضم با 78/6 دارای بالاترین مقدار بود. همچنین، لرزش هاضم‌ها تأثیر معنی‌داری بر میزان تولید بیوگاز داشته و تاثیرات ساختاری درون هاضم را بهبود ‌بخشید. اما تکرار زیاد لرزش در مقدار تولید بیوگاز تأثیر معنی‌داری نداشت. میانگین میزان تولید متان در این فرآیند در هاضم‌های با لرزش هر روز 06/34 درصد مول، هاضم‌های با لرزش سه روز یکبار 09/23 درصد مول و هاضم‌های ثابت 32/17 درصد مول بود. در کل نتایج نشان داد که لرزش هاضم‌ها بهبود قابل توجهی در تولید بیوگاز و متان ایجاد کرده و تأثیر مثبتی بر pH و ساختار داخل هاضم دارد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Investigating the effect of digester stirring on biogas production from bean skin

نویسندگان [English]

  • Mojtaba Malekzadeh 1
  • Reza Yeganeh 2
  • Bahram Ghamari 3
  • shaban ghavami jolandan 4

1 MSc, Department of Biosystem Engineering, Agriculture Faculty, Ilam University, Ilam, Iran

2 Associate Professor, Department of Biosystem Engineering, Agriculture Faculty, Ilam University, Ilam, Iran

3 Assistant professor, Department of Biosystems Engineering, Faculty of Agriculture, ilam University, Iran

4 Assistant professor, Department of Biosystems Engineering, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Iran

چکیده [English]

Introduction: Biogas is a natural and cost-effective source of energy that leaves significant impacts on the environment and industries, widely produced and utilized in many countries. This gas is generated through the anaerobic digestion of organic materials, including animal manure, food waste, and sewage. Microorganisms play a crucial role in the biogas production process by feeding on biomass. The digestion carried out by these microorganisms produces methane, constituting approximately 50-70% of biogas, which is flammable and used for cooking, cooling and heating, electricity generation, methanol and steam production, waste management, and mechanical power. Given these benefits, biogas production holds special significance, and extensive research has been conducted globally in this field, yielding valuable results. In the present study, we aim to investigate and evaluate the influence of lentil skin as a biomass on the quantity and constituents of produced biogas.

Materials and Methods: This research was conducted in the Biosystems Mechanics Workshop of the Faculty of Agriculture, Ilam University. The objective of this study was to investigate the effect of lentil skin on biogas production and analyze its constituent components. The workflow typically comprised four stages. In the first stage, fresh lentil skins were broken down into smaller pieces and stored in a suitable environment to be used as digester feedstock for the experiment. Shredding organic waste aids in the digestion process. The second stage involved providing optimal conditions for microbes, which require warmth. Accordingly, the temperature was maintained at an average of 28-30 degrees Celsius during the experiment.
The third stage involved the actual digestion process, where anaerobic digestion took place in large tanks, resulting in real biogas production. For this purpose, materials were combined in predetermined proportions (1:1) and loaded into the digesters. In each stage, 5 kilograms of lentil skin were combined with 5 kilograms of water and added to the digester. The experiment was conducted in three repetitions, employing fixed digesters, digesters with agitation every three days, and digesters with daily agitation as influencing factors. The quantity of biogas production and its components were examined over a 30-day period. Gas sampling occurred every 10 days, while pH and gas pressure were measured every 72 hours. In the final stage, the gas underwent purification by removing impurities and carbon dioxide. The amount of gases produced from lentil skin was measured using a chromatograph with a TCD detector. This instrument employs chromatography-based separation. It's worth noting that 9 gas capsules specifically designed for automobiles were used to construct the digesters. The construction stages of the digesters included cleaning, coloring, and installing connections. Moreover, to create uniform temperature and concentration conditions inside the tank, inlet and outlet connections were carefully designed and installed. A safety valve was also installed to ensure the safety of the digesters.

Results and Discussion: The obtained results, including loading conditions, pH levels, and internal pressure within the digester during the experiment, and the quantity and components of biogas, were examined across all samples. Statistical methods, including Analysis of Variance (ANOVA) and Duncan's mean comparison test, were employed for data analysis. The results indicated that digester agitation directly influences the pH levels, with the highest pH observed in digesters with daily agitation, displaying the most significant fluctuations. Furthermore, digester agitation has a direct impact on the biogas production levels, enhancing structural effects within the digester. However, frequent agitation repetition has a negligible effect on the amount of biogas produced. The average methane production rates in this process were 34.06% mol for digesters with daily agitation, 23.09% mol for digesters with agitation every three days, and 17.32% mol for fixed digesters.

Conclusion:  Currently, a significant portion of the world's energy demand is met through fossil fuels, the combustion of which releases carbon dioxide and various pollutants, including sulfur and nitrogen oxides, which are highly harmful. Consequently, in recent years, there has been a growing inclination towards utilizing various renewable energy sources. One crucial energy source that also provides a solution for waste reduction is biogas. Given the increasing importance of sustainable energy development and the need for waste management, anaerobic digestion technology and biogas production have rapidly grown. Therefore, the findings of this research underscore the importance of exploring innovative methods and utilizing diverse biological resources in managing and optimizing the biogas production process.

کلیدواژه‌ها [English]

  • Biogas
  • bean Skin
  • Methane
  • Digester
1-Amoo, A. O., Ahmed, S., and Haruna, A. 2023. The Impact of Process Variables on the Quantity and Quality of Biogas Generated from Anaerobic Digestion of Food Waste and Rumen Contents. Industrial and Domestic Waste Management, 3(1): 27-37.
2- Basumatary, S., Das, S., Goswami, P., and Kalita, P. 2023. Investigation of the effect of slurry mixing ratio and temperature on biogas production from cattle dung in a field-scale anaerobic digestion plant. International Journal of Ambient Energy, 45(1).
3- Guerini, M.F., Lumi, M., and Hasan, C. 2018. Munique Marder Energy recovery from wine sector wastes: A study about the biogas generation potential in a vineyard from Rio Grande do Sul, Brazil. ustainable Energy Technologies and Assessments, 29: 44-49.
4- Hashemi, S., Karimi, K., and Sabzealian, M. 2017. Improvement of Biogas and Ethanol Production from Safflower Straw Using Sodium Hydroxide Pretreatment. Biological Journal of Microorganism, 6(22): 27-43. (In Persian with English abstract)
5- Kabeyi, M. J. B., and Olanrewaju, O. A. 2022. Biogas Production and Applications in the Sustainable Energy Transition. Journal of Energy, 2022: 1-43.
6- Karami Bojani, S., Yeganeh, R., Khairalipour, K., and Ebrahimi, H. 2014. Investigating the effect of the type of raw material and reactor on the amount and constituents of biogas. Master's thesis, Ilam University. (In Persian with English abstract)
7- Lattieff, F.A. 2016. A study of biogas production from date palm fruit wastes. Journal of Cleaner Production, 139:1191-1195.
8- Mahmoudi, M., Ebrahimi, R., and Ghasemi, A. 2017. Qualitative and quantitative analysis of biogas generated from co-digestion of cow dung, municipal sewage and kitchen waste. Journal of Agricultural machinery, 7(1): 192-203. (In Persian with English abstract)
9- Malekzadeh, M.J., Kiani Dehkiani, M., and Sajadiyeh, S. M. 2020. The effect of temperature and cow manure on biogas production from sugarcane bagasse. Journal of Agricultural Engineering, 42(4): 107-117. (In Persian with English abstract)
10- Mancini, M., Papirio, S., and Lens, N. L. 2018. Increased biogas production from wheat straw by chemical pretreatments.  Renewable Energy, 119: 608-614.
11- Moghadam, A. M., Aghkhani, H., Aghel, M., and Abaspoor. H. 2013. Production of biomethane from anaerobic digestion of waste potatoes combined cattle manure by batch daigester. The second conference of clean energy, Kerman, Iran. (In Persian)
12- Nauman, M., Tayyab, M., Faheem, M., Ikram, K., Akram, M. W., Asif, M., and Omar, M. M. 2023. Designing and performance evaluation of continuously stirring anaerobic batch reactor for biomethane production from biowaste. Biomass Conversion and Biorefinery. Doi: 10.1007/s13399-023-04203-y.
13- Purdy, A., Pathare, B., Wang, Y., and Huang, Y. 2018. Towards sustainable farming: Feasibility study into energy recovery from bio-waste on a small-scale dairy farm.  Journal of Cleaner Production, 174: 899-904.
14- Safari, M., and Abdi, R. 2016. Comparison of biogas production from rapeseed and wheat residues in compound with cattle manure. Journal of Agricultural Machinery, 6(2):476-487. (In Persian with English abstract)
15- Salehi, K., Khazraei, M., Hosseini, F., and Mostafazadeh, F. K. 2013. Biogas production from kitchen waste and sheep manure in laboratory scale. Journal of Environmental science and technology, 16(1): 463-470. Special issue 93. (In Persian with English abstract)
16- Tadibani, A., Kiani, M., Karimi, K., and Soleimani, M. 2019. Effect of temperature and pre-processing method on biogas production from sugarcane bagasse. Master's thesis. Shahid Chamran University of Ahvaz. (In Persian with English abstract)
17- Tasnim, F., Iqbal, S.A., and Chowdhury, A. R. 2017. Biogas production from anaerobic co-digestion of cow manure with kitchen waste and Water Hyacinth. Renewable Energy, 109:434-439.
18- Terboven, C., Ram, P., and Herrmann, C. 2017. Demand-driven biogas production from sugar beet silage in a novel fixed bed disc reactor under mesophilic and thermophilic conditions. Bioresource Technology, 241: 582-592.
19- Wang, F., Zhang, D., Wu, H., Yi, W., Fu, P., Li, Y., and Li, Z. 2016. Enhancing biogas production of corn stover by fast pyrolysis pretreatment. Bioresource Technology, 218:731-736.