نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار گروه علوم و مهندسی باغبانی، دانشکده کشاورزی و محیط زیست، دانشگاه اراک، اراک، ایران

2 دانش‌آموخته کارشناسی ارشدگروه علوم و مهندسی باغبانی، دانشکده کشاورزی و محیط زیست، دانشگاه اراک، اراک، ایران

چکیده

زامیفولیا (Zamioculcas zamiifolia) جزو گیاهان زینتی آپارتمانی ارزشمند است و تولید آن در مدت زمان کم‌تر و با کیفیت بهتر، از نظر تجاری دارای اهمیت می‌باشد. در این پژوهش به ‌بررسی تأثیر همزمان کاربرد کود زیستی آربوسکولار میکوریزا و بیوچار بر ازدیاد زامیفولیا پرداخته شد. تیمارها شامل بیوچار 5 درصد+ کود زیستی آربوسکولار میکوریزا 6 درصد، بیوچار 10 درصد+ کود زیستی آربوسکولار میکوریزا 6 درصد، بیوچار 5 درصد+ کود زیستی آربوسکولار میکوریزا 12 درصد، و بیوچار 5 درصد+ کود زیستی آربوسکولار میکوریزا 12درصد و شاهد جهت ازدیاد قلمه برگی زامیفولیا بود که به‌صورت طرح کاملا تصادفی اجرا شد. پس از 9 ماه، شاخص‌های تعداد پاجوش، طول و تعداد ریشه، قطر ریزوم، میزان کلروفیل، درصد کلنیزاسیون و سایر صفات اندازه‌گیری شد. کاربرد بیوچار 10 درصد به‌همراه کود زیستی میکوریزا آربوسکولار 6 درصد سبب افزایش حدود 3/3 برابر ارتفاع اندام هوایی نسبت به شاهد شد. بیشترین قطر ریزوم در بیوچار 10 درصد به‌همراه کود زیستی میکوریزا آربوسکولار 6 درصد مشاهده شد. بیشترین تعداد شاخه در تیمار بیوچار 10 درصد به‌همراه کود زیستی میکوریزا آربوسکولار 6 درصد حاصل شد که 8/1 بیشتر از شاهد بود. کلونیزاسیون در میکوریزا آربوسکولار 12 درصد، 6/1 برابر میکوریزا آربوسکولار 6 درصد بود. کلنیزاسیون ریشه با میزان کلروفیل برگ همبستگی مثبت معنی‌داری داشت. رابطه منفی معنی‌داری بین وزن خشک اندام هوایی با وزن خشک اندام زیرزمینی و محتوای آب نسبی مشاهده شد. نتایج این آزمایش نشان داد مصرف بیوچار و مایه تلقیح میکوریزا در بستر کشت سبب افزایش رشد گیاهچه‌های تکثیر شده زامیفولیا از طریق قلمه برگی شد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Improvement of Zamioculcas zamiifolia vegetative propagation by mycorrhizal biofertilizer and biochar application

نویسندگان [English]

  • Mina Taghizadeh 1
  • Zeinab Azimi Senejani 2
  • Mousa Solgi 1

1 Associate Professor, Department of Horticultural science, College of Agricultural and natural resources, Arak University, Arak, Iran.

2 Former M.Sc., Department of Horticultural science, College of Agricultural and natural resources, Arak University, Arak, Iran

چکیده [English]

Introduction One of the important proceedings in propagation process of plants is improving the speed of rooting and shortening this propagation period. Today, use of natural materials as an alternative for chemical fertilizer is concerned with successful rooting of cuttings in ornamental plants that in some cases have perceived well and effective influence of these biofertilizer compared with chemicals. Zamioculcas zamiifolia is a valuable ornamental indoor plant. The production of this plant in short time is commercially important. An important stage in the process of accelerating this plant production is to improve the rooting and shortening its growth stage. Therefore, the simultaneous effect of mycorrhizal biofertilizer and biochar on Zamioculcas zamiifolia propagation was studied in this research.
Materials and Methods This study was performed in the greenhouse in the faculty of agriculture and environmental science of Arak University with controlled conditions of 25 ◦C temperature, 70% humidity and 10,000 lux of light. Treatments were included biochar 5% + arbuscular mycorrhizal biofertilizer 6%, biochar 10% + arbuscular mycorrhizal biofertilizer 6%, biochar 5% + arbuscular mycorrhizal biofertilizer 12%, and biochar 10% + arbuscular mycorrhizal biofertilizer 12%, and control (without biochar and arbuscular mycorrhizal biofertilizer). The arbuscular mycorrhizal biofertilizer was mixture of Clarodeoglomus etunicatum, Rhizophagus irregularis, Funneliformis mosseae. The experiment was performed as a completely randomized design (CRD) at three replicates. The pots were containing cocopeat + perlite (1:1) and different treatments of arbuscular mycorrhiza biofertilizer and biochar. Morphological and physiological traits such as off-shoot number, Leafy cuttings color, Leaf width, Leaf length, Shoot length, root number, root length, rhizome diameter, chlorophyll a, b and total chlorophyll content, fresh weight (FW) of roots and shoots, the dry weight (DW) of roots and shoots, Saturation weight, relative water content (RWC), biomass, electrolyte leakage and arbuscular mycorrhizal root colonization were measured after 9 months.
Results and Discussion Biochar and arbuscular mycorrhiza biofertilizer application in propagation medium increased off-shoot growth of Zamioculcas zamiifolia. The results showed that the highest roots number was obtained in the treatments of arbuscular mycorrhiza biofertilizer 12% + biochar 10% which was followed by arbuscular mycorrhiza biofertilizer 6% + biochar 5%. The maximum root length was observed by arbuscular mycorrhiza biofertilizer 12% + biochar 5% treatment. The root colonization had a positive correlation with the number of off-shoot, leaf size, shoot FW and leaf chlorophyll content. The application of biochar 10% + arbuscular mycorrhiza biofertilizer 6% treatment caused an increase in the height of the shoot about 3.3 times more than the control. The highest rhizome diameter was observed in biochar 10% + arbuscular mycorrhiza biofertilizer 6% treatment. The maximum off-shoot number was measured in the treatment of biochar 10% + arbuscular mycorrhizal biofertilizer 6% treatment which was 1.8 times more than control. No signs of colonization were observed in the control, but the roots colonization in the arbuscular mycorrhiza biofertilization treatment 12% was 1.6 times more that in the arbuscular mycorrhiza biofertilizer 6%. Increasing the amount of biochar and arbuscular mycorrhiza application in the propagation medium enhanced arbuscular mycorrhiza roots colonization of Zamioculcas zamiifolia. A significant positive correlation was observed between the number of off-shoot and the total biomass (r=0.95). A high positive correlation was observed between the fresh weight of shoot and the saturated weight (r=0.95). There was a significant positive correlation between saturated weight with total chlorophyll (r=0.97) and total biomass (r=0.96). The relationship between total chlorophyll and biomass was a significant positive (r=0.95). There was a significant positive correlation between the root colonization and chlorophyll a (r=0.83). A significant negative correlation was detected between dry weight of shoot and dry weight of root (r=0.94) and dry weight of root with relative water content (r=0.95).
Conclusion Generally, in the most of studied traits, the use of biochar and arbuscular mycorrhiza biofertilizer in the culture medium improved the off-shoot growth and rooting characteristics of Zamioculcas zamiifolia compared to the control. Shortening the propagation period of this slow growth and luxury plant is significant aspects in the production of this ornamental plant that reduce production costs and make the product more cost-effective. The use of biochar 10% + arbuscular mycorrhiza biofertilizer 6% in culture medium is recommended to improve the quantitative and qualitative properties through the propagation of this ornamental houseplant.

کلیدواژه‌ها [English]

  • Off-shoot
  • biofertilization
  • Symbiosis
  • Ornamental plant
  • Rooting
  1. Abdel-Fattah, G.M., El-Haddad, S.A., Hafez, E.E. and Rashad, Y.M. 2011. Induction of defense responses in common bean plants by arbuscular mycorrhizal fungi. Microbiological Research, 166, 268-281.
  2. Adavi, Z. and Baghbani-Arani, A. 2018. The effect of planting date and symbiotic Mycorrhiza fungi on physiological and growth characteristics of three cultivars of potato. Journal of Plant Biology, 10, 39-56. (in Persian with English abstract)
  3. Adzraku, H.V., Tandoh, P.K. and Zurei, L.H. 2017. Use of biochar as media for propagation of some difficult-to-root ornamental plants. Environment, Earth and Ecology, 1,17-26.
  4. Arab, M.A., Taghizadeh, M. and Solgi, M. 2018. The effect of symbiosis of arbuscular mycorrhizal fungus and biochar fertilizer on rose yield. Thesis for the degree of (MSc), Arak Faculty of Agriculture and Natural Resources. (in Persian)
  5. Arjmand Alavi, M., Hatamzadeh, A. and Ehteshami, S.M. 2014. Effect of bulb inoculation with four species mycorrhizal fungi on quantitative and qualitative yield of two lily species. Journal of Seed Sciences and Research, 1, 57-65. (in Persian with English abstract)
  6. Arnon, D.I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24,1.‏
  7. Auge, R.M. 2001. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza, 11,3-42.
  8. Badizadegan, F., Solgi, M., Taghizadeh, M. and Abbasifar, A. 2023. Effect of chitosan on propagation of zamiifolia as tropical ornamental indoor plant by leaf cutting. Ornamental Horticulture, 29(2), 278-285.
  9. Bahadori, F., Sharifi Ashorabadi, E., Mirza, M., Matinizade M. and Abdosi, V. 2015. The effects of plant growth promoting rhizobacteria and arbuscular mycorrhizal fungi on N, P and K uptake and yield of Thymus daenensis Clak. Journal of Medicinal and Aromatic Plants Research, 31, 527-538. (in Persian with English abstract)
  10. Bidarnamani, F., Mohkami, Z. and Shabanipour. M. 2016. Using Two Species of Mycorrhizal Fungi in Different Media to Increase the Rooting of Schefflera Arboricola Flower and Ornamental plant, 1,8-16.
  11. Boostani, H.R., Chorom, M., Moezzi, A.A., and Enayatizamir, N. 2014. Mechanisms of plant growth promoting rhizobacteria (PGPR) and mycorrhizae fungi to enhancement of plant growth under salinity stress: A review. Scientific Journal of Biological Sciences, 3(11), 98-107.
  12. Busse, M.D., Fiddler, G.O. and Ratcliff, A.W. 2004. Ectomycorrhizal formation in herbicide treated soils of differing clay and organic matter content. Water, Air and Soil Pollution, 152, 23-34
  13. Chen, H., Ma, J. Wei, J. Gong, X. Yu, X. Guo, H. and Zhao. Y. 2018. Biochar increases plant growth and alters microbial communities via regulating the moisture and temperature of green roof substrates. Science of the Total Environment, 63, 333 –342.
  14. Chen, J. and Henny, R.J. 2003. ZZ: a unique tropical ornamental foliage plant. HortTechnology, 13, 458-462.
  15. Chen, J., Wang, W. Fang, J. and Varahramyan, K. 2004. Variable-focusing microlens with microfluidic chip. Journal of Micromechanics and Microengineering, 14, 675.‏
  16. Conversa, G., Bonasia, A., Lazzizera, C. and Elia, A. 2015. Influence of biochar, mycorrhizal inoculation, and fertilizer rate on growth and flowering of Pelargonium (Pelargonium zonale) plants. Frontiers in Plant Science, 6, 429.
  17. Dehestani-Ardakani, M., Khosravi, N. Shirmardi, M. Gholamnezhad, J. and Naserinasab, F. 2021. The Effect of Biofertilizers and Biochar on Morphological and Physiological Properties of Narcissus cv. ‘Shahla’ (Narcissus tazetta cv. ‘Shahla’). Journal of soil and plant intraction, 12, 79-93.
  18. Farhadi, A., Enayatizamir, N., Farrokhian Firouzi, A. and Howeizeh, H. 2016. The Effect of Arbuscular Mycorrhizal Fungi and Drought Stress on Some Physical and Mechanical Characteristics and Soil glomalin Content on Blue Panic Grass (Panicum antidotal). Journal of Water and Soil Conservation, 23(5), 267-280. (in Persian with English abstract).
  19. Fathi, M., Zarei, H. and Varaste, F. 2018. Rooting of honeysuckle's (Lonicera japonica) stem cuttings under treatment of natural and chemical compounds. Journal of Plant Production Research, 25(2), 83-97. (in Persian with English abstract).
  20. Feng, C.T., Ho, W.C. and Chao, Y.C. 2006. Basal petiole rot and plant kill of Zamioculcas zamiifolia caused by Phytophthora nicotianae. Plant Disease, 90,1107-1109.
  21. Giovannetti, M. and Mosse, B. 1980. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytologist, 84, 489-500.
  22. Glaser, B., Lehmann, J. and Zech, W. 2002. Ameliorating physical an d chemical properties of highly weathered soils in the tropics with charcoal–a review. Biology and Fertility of Soils, 35, 219-230.
  23. Gresbach, J. 2007. Growing Temperate Fruit Trees in Kenya. World Agroforestry Centre (ICRAF), 138p.
  24. Harrison, M. 2012. The Incredible ZZ plant (Zamioculcas zamiifolia). Available from www.davesgarden.com.
  25. Heywood, V. 2001. Conservation and sustainable use of wild species as sources of new ornamentals. In International Symposium on Sustainable Use of Plant Biodiversity to Promote New Opportunities for Horticultural Production, 598, 43-53.
  26. Houben, D., Evrard L. and Sonnet, P. 2013. Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere, 92,1450-1457.
  27. Jabborova, D., Annapurna, K., Paul, S., Kumar, S., Saad, H.A., Desouky, S., Ibrahim, M.F. and Elkelish, A., 2021. Beneficial features of biochar and arbuscular mycorrhiza for improving spinach plant growth, root morphological traits, physiological properties, and soil enzymatic activities. Journal of Fungi, 7(7), 571.
  28. Karami, N., Clemente, R. Moreno-Jiménez, E. Lepp, N.W. and Beesley, L. 2011. Efficiency of green waste compost and Biochar Soil Amendments for Reducing Lead and Copper Mobility and Uptake to Ryegrass. Journal of Hazardous Materials, 191,41-48.
  29. Keshavarz Fard, S., Solgi, M., Bagheri H. and Shahrjerdi, I. 2020. The application of Biochar with Humic acid for resistance to drought stress in Zinnia, Applied Biology, 33,148-174.
  30. Khajeh, P. and Taghizadeh, M. 2022. Application effect of bagasse biochar and Arbuscular mychorrhizal fungi in commercial propagation of Sansevieria trifaciata Agricultural Engineering (Scientific Journal of Agriculture), 45(3), 225-246. (in Persian with English abstract).
  31. Khandan Mirkohi, A., Sheikh Asadi, M., Taheri M.R. and Babalar, M. 2015. The effects of arbuscular mycorrhizal fungi and different phosphorus levels on some growth aspects of Lisianthus. Journal of Soil and Pant Intraction, 6, 57-67.
  32. Khosravi, N., Dehestani Ardakani, M., Shirmardi, M., Gholamnezhad, J. and Naserinasab, F., 2021. Effect of Biochar and Some Biologic Fertilizers on Flowering and Morphophysiological Charachteristics of Narcissus tazetta var. Shahla. Journal of Horticultural Science and Technology, 22(2),199-202. (in Persian with English abstract).
  33. Kormanik, P.P. 1982. Quantification of vesicular-arbuscular mycorrhizae in plant roots. Methods and principles of mycorrhizal research, 37-46.
  34. Lehmann, J., Rillig, M.C., Thies, J., Masiello, C.A., Hockaday, W.C. and Crowley, D. 2011. Biochar effects on soil biota- a review. Soil Biology and Biochemistry, 43,1812 -1836.
  35. Miyasaka, S.C., Habte, M. Friday, J.B. and Johnson, E.V. 2003. Manual on arbuscular mycorrhizal fungus production and inoculation techniques. SCM-5, 21, 1.
  36. Narula, N., Kumar, V., Behl, R.K., Deubel, A., Gransee, A. and Merbach, W. 2000. Effect of P‐solubilizing Azotobacter chroococcum on N, P, K uptake in P‐responsive wheat genotypes grown under greenhouse conditions. Journal of Plant Nutrition and Soil Science, 163,393-398.
  37. Nirmala, K.S. 2017. Technology protocol for in vitro and ex vitro mass propagation of Zamioculcas zamiifolia. UGC,1-15.
  38. Obia, A., Mulder, J., Martinsen, V., Cornelissen, G. and Børresen, T. 2016. In situ effects of biochar on aggregation, water retention and porosity in light-textured tropical soils. Soil and Tillage Research, 155, 35-44.
  39. Opoku, M.E., Opuni-Frimpong, E. and Owusu, A.S. 2022. Effects of Biochar Soil Amendment on the Rooting and Early Growth of African Mahogany Species: Khaya Ivorensis and Khaya Grandifoliola. Journal of Botanical Research, 5(1),149-160.
  40. Parvizi, Kh. and Dashti, F. 2014. Evaluation the effect of symbiosis with mycorrhizal fungus on growing characteristics and minituber yield of potato plantlets. Journal of horticulture science, 28, 96-106. (in Persian with English abstract).
  41. Pühringer, H. 2016. Effects of different biochar application rates on soil fertility and soil water retention in on-farm experiments on smallholder farms in Kenya. Master’s Thesis in Environmental Science, Swedish University of Agricultural Sciences, Uppsala, Sweden.
  42. Sadhana, B. 2014. Arbuscular Mycorrhizal Fungi (AMF) as a Biofertilizer-a Review. Int J Curr Microbiol Apply Science, 3, 384-400.
  43. Scagel, C.F. 2001. Cultivar specific effects of mycorrhizal fungi on the rooting of miniature rose cuttings. Journal of Environmental Horticulture, 19, 15-20.
  44. Seneviratne, K.A.C.N., Daundasekera, W.A.M., Kulasooriya, S.A. and Wijesundara, D.S.A. 2013. Development of rapid propagation methods and a miniature plant for export-oriented foliage, Zamioculcas zamiifolia. Ceylon Journal of Science (Biological Sciences), 42, 55-62.
  45. Sharaf-Eldin, M., Elkholy, S., Fernández, J.A., Junge, H., Cheetham, R., Guardiola, J. and Weathers, P. 2008. Bacillus subtilis FZB24® affects flower quantity and quality of saffron (Crocus sativus). Planta Medica, 74,1316-1320.
  46. Smith, S.E. and Read, D.J. 2010. Mycorrhizal symbiosis. Academic Press.
  47. Valizadeh Ghale Beig, A., Neamati, S.H., Emami H. and Aroie, H. 2021.The effect of glayol biochar on some of morphological traits and heavy metals uptake in lettuce (Lactuca sativa L. cv Syaho). Journal of Horticultural Sciences 51,773-784. (in Persian with English abstract).
  48. Wahab, A., Muhammad, M., Munir, A., Abdi, G., Zaman, W., Ayaz, A., Khizar, C. and Reddy, S.P.P. 2023. Role of arbuscular mycorrhizal fungi in regulating growth, enhancing productivity, and potentially influencing ecosystems under abiotic and biotic stresses. Plants, 12(17), 3102.