نوع مقاله : مقاله پژوهشی

نویسندگان

گروه تولید و ژنتیک گیاهی، دانشگاه رازی

چکیده

در سال‏های اخیر، سیلیکون با اثر کاهش خسارت گیاهان در مقابل برخی تنش‏های محیطی، توجه محققین را به خود معطوف نموده است. کاملینا یک گیاه دانه روغنی از خانواده چلیپائیان است که از معرفی آن در ایران، کمتر از یک دهه می‌گذرد. از این رو، پژوهشی با هدف بررسی تاثیر سیلیکون در افزایش تحمل به تنش شوری گیاهچه کاملینا در آزمایشگاه بذر دانشگاه رازی به اجرا در آمد. آزمایش به صورت فاکتوریل بر پایه طرح کاملاً تصادفی با سه تکرار اجرا شد. فاکتور‌های آزمایش شامل ژنوتیپ کاملینا (رقم سهیل و لاین-84 )، شوری (چهار سطح صفر، 3-، 6- و 9- بار) و سیلیکون (پنج سطح صفر، 2، 4، 6 و 8 میلی‌مولار) بودند. بنابراین، آزمایش شامل 120 واحد آزمایشی بود. نتایج نشان داد که با افزایش شدت شوری، ویژگی‌های رشدی و میزان پروتئین‌های محلول گیاهچه کاهش یافتند اما در مقابل فعالیت آنزیم‏های کاتالاز، پراکسیداز و سوپراکسید دیسموتاز و میزان مالون‌دی‌آلدهید افزایش پیدا کردند. در شوری 6- بار، استفاده از سیلیکون 8 میلی‌مولار سبب افزایش درصد جوانه‌زنی بذر (95/13 درصد)، طول گیاهچه (82/58 درصد)، شاخص بنیه گیاهچه (80/79 درصد)، وزن خشک گیاهچه (50 درصد) و فعالیت آنزیم سوپراکسید دیسموتاز (44/67 درصد) گردید. به طور کلی، به‌نظر می‌‏رسد که استفاده از سیلیکون غلظت‌های 6 و 8 میلی‌مولار در کاهش اثرات سوء تنش شوری بر ویژگی‌های رشدی و بیوشیمیایی گیاهچه کاملینا مؤثر بوده است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

The effect of silicon on improving the growth and biochemical characteristics of camelina (Camelina sativa L.) seedlings under saline conditions

نویسندگان [English]

  • Nasrin Teimoori
  • Mokhtar Ghobadi
  • Danial Kahrizi

Department of Plant Production and Genetics, Razi University

چکیده [English]

Introduction: Salinity stress reduces the yield of agricultural products. Water or soil salinity is caused by the increase in the concentration of soluble salts and minerals in water and soil, which leads to the accumulation of salt in the root area, to the extent that it prevents water absorption and optimal plant growth. In general, tolerance to salinity is important during all stages of plant growth. Seed germination is the first stage of plant growth. Salinity stress reduces the percentage and rate of seed germination and also seedling growth. Crop yield is quantitatively and qualitatively dependent on the percentage, rate and uniformity of seed germination and also seedling growth. In recent years, a lot of attention has been paid to silicon due to its effect in reducing plant damage against some environmental stresses (such as drought, heat, heavy metals, salinity etc.). The studies show that silicon protects the plant against environmental stresses by stimulating growth and increasing the antioxidant enzymes activity. It has also been reported that the silicon is effective in increasing the chlorophyll content, stomatal conductance, photosynthesis rate and the resistance of plants under stressful conditions. Silicon increases the plant tolerance to the salinity by improving photosynthetic activity, increasing the relative selection of K+/Na+, increasing the soluble substances in the xylem, reducing sodium absorption, and mechanical protection against the toxicity of elements. Therefore, a research was carried out with the aim of investigating the effect of the silicon in increasing tolerance to salinity stress in camellia seedlings.
Materials and Methods: A laboratory experiment was carried out in 2021 at Campus of Agriculture and Natural Resources, Razi University, Kermanshah, Iran. The experiment laid out as a factorial based on a completely randomized design with three replications. The factors were camelina genotypes (Sohail cultivar and Line-84), salinity (four levels 0, -3, -6 and -9 bar) and silicon (five levels of 0, 2, 4, 6 and 8 mM). Salinity stress levels were prepared by different amounts of sodium chloride (NaCl) salt. Silicon factor levels were also prepared by different concentrations of sodium silicate (Na2SiO3). The experiment consisted of 120 petri dishes. Data analysis was done with MSTATC and SAS statistical softwares. Means were compared using Duncan's multiple range test (P≤0.05). Excel software was used to draw figures.
Results and Discussion: The results showed that with the increase in salinity intensity, the growth characteristics and the amount of soluble proteins of camellia seedlings decreased, but the activity of catalase, peroxidase and superoxide dismutase enzymes and the amount of malondialdehyde increased. The lowest activity of catalase was observed under non-salinity conditions (control). But the highest activity of catalase enzyme (104.4 µM/min. mg protein) belonged to the treatment of -9 bar salinity. The use of silicon increased the seedling growth, the amount of soluble proteins, the activity of antioxidant enzymes, and the amount of malondialdehyde in camelina seedlings. The highest germination rate (23.97 seeds/day) was obtained in the treatment of 8 mM silicon. With the increase in silicon concentration, the amount of soluble proteins increased, so that in the 2, 4, 6 and 8 mM treatments, compared to the control treatment, the amount of soluble protein increased by 4, 8, 10.75 and 10.9%, respectively. By increasing the concentration of silicon, the activity rate of catalase enzyme increased. The highest activity rate of peroxidase enzyme (35.38 µM/min. mg protein) was observed in 8 mM silicon, which was significantly different from other treatments. The lowest activity of peroxidase was related to the control treatment. Line-84 had 8.65% higher activity rate of superoxide dismutase than the Sohail cultivar. With increasing salinity stress and silicon concentration, the activity rate of superoxide dismutase increased. On average, in the treatments of 2, 4, 6 and 8 mM silicon, the activity rate of superoxide dismutase was increased 11, 27, 44 and 57%, respectively, compared to the control (without silicon). The highest amount of malondialdehyde (44.42 µM/g fresh weight) was observed in the treatment of 8 mM silicon.
Conclusion: The results of this experiment showed that the application of silicon, by increasing the activity of antioxidant enzymes, reduced the oxidative damage caused by reactive oxygen species and thus protected camellia seedlings against salt stress. In general, it seems that the use of silicon has been effective in reducing the adverse effects of salinity stress on growth and biochemical characteristics of camelina seedlings.

کلیدواژه‌ها [English]

  • Antioxidant
  • Germination rate
  • Oil crop
  • Sodium chloride
  • Sodium silicate
  1. Tamartash, R., Shokrian, F. and Kargar, M. 2011. Investigating the effect of salinity and drought stress on the germination characteristics of Barasim clover seeds. Marta Scientific Research Journal. Volume 4. Number 2. Page 288-297. (in Persian)
  2. Khalesrou, Sh., and Agha Alikhani, M. 2008. Effect of salinity and water Deficit stress on seed germination, Pajouhesh & Sazandegi, 20 (4): 153-163.
  3. Zhang, W., Xie, Z., Lang, D., Cui, J., Zhang, X., 2017. Beneficial Effects of Silicon on Abiotic Stress Tolerance in Legumes Journal of Plant Nutrition. 1-33.
  4. Epstein, E. 1994. The anomaly of silicon in plant biology. Proceedings of the National Academy of cience, 91 (1): 11-17.
  5. Anser, A., Shahzad, M. A., Basra, S. H., Javaid Iqbal, M., Ahmad, A., Bukhsh A., and Sarwar, M. 2012. Salt stress alleviation in field crops through nutritional supplementation of silicon. Pakistan Journal of Nutrition. 11: 637-655.
  6. Matichenkov, V. V. 2008. Silicon deficiency and Functionality in Soils, Crops and Food. 2th International Conference on Soil and Compost Eco-Biology, November 26th -29th , 2008. Puerto de la Cruz, Tenerife. Spain.
  7. Kahrizi, D., Kazemitabar, SK., Soorni, J., Rostami-Ahmadvandi, H., Falah, F., Akbarabadi, A., Raziei, Z., Bakhsham, M. 2016. Introducing of camelina medicinal-oil plant for dryland conditions in Iran. National Conference on the Impact of Climate Change on Plant Production. 9 Sep. 2016. Sari, Iran
  8. Alzahrani, Y., Kuşvuran, A., Alharby, H.F., Kuşvuran, S. and Rady, M.M. 2018. The defensive role of silicon in wheat against stress conditions induced by drought, salinity or cadmium. Ecotoxicology and Environmental Safety. 154: 187-196.
  9. Hashemi, A., Abdolzadeh, A. and Sadeghipour, H.R. 2010. Beneficial effects of silicon nutrition in alleviating salinity stress in hydroponically grown canola, Brassica napus, plants. Soil Science and Plant Nutrition. 56: 244–253.
  10. Biju, S., Fuentes, S. and Gupta, D. 2017. Silicon improves seed germination and alleviates drought stress in lentil crops by regulating osmolytes, hydrolytic enzymes and antioxidant defense system. Plant Physiology and Biochemistry. 119: 250-264.
  11. International Seed Testing Association (ISTA). 2003. Handbook for Seedling Evaluation (3rd. Ed.). International Seed Testing Association. Zurich, Switzerland.
  12. Alen, S. G., A. K. Dobrenz, M., Schonhorst, H., and stoner, J. E. 1985. Heritability of Nacl tolerance in germination of alfalfa seed. J. Agron. 77: 99-101.
  13. Association of Official Seed Analysts (AOSA). 1993. Seed Vigor Testing Journal of Science, 12(1): 1-19.
  14. International Seed Testing Association (ISTA). 2006. International Rules for Seed Testing. Basserdorf, Switzerland, 2: 379 (Handbook)
  15. Maguire, J. D. 1962. Speed of germination, aid in selection and evaluation for seedling emergence and vigour. Crop Sci. 2: 176-177.
  16. Ellis, R. H., and Roberts, E. H. 1981. The quantification of aging and survival in orthodox seeds. Seed Sci. Technol. 9: 377-409.
  17. Agrawal, R. 2003. Seed Technology. Pub. Co. PVT. LTD. New Delhi. India.
  18. Hodges, M.D., DeLong, J.M., Forney, C.F., Prange, R.K. 1999: Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207: 604–611.
  19. Chance, B., and Maehly, A.C. 1995. “Assay of catalase and peroxidase”. Methods in Enzymology. 2: 764-775.
  20. Sinha, A.K. 1972. Colorimetric assay of catalase. Analytical Biochemistry. 47: 389-394.
  21. Beauchamp, C., and Fridovich, I.1971. Superoxide dismutase: Improved assays and an assay applicable to acrylamide Gels. Analytical Biochemistry. 44(1):276-87.
  22. Bradford, M.M. 1976. “A rapid and sensitive method for the quantitation of proteinutilizing the principle of protein-dye biding”. Annual Review of Biochemistry. 72: 248-254.
  23. Rezaee, M. and Alinejad, T. 2004. Study of effect of salinity on germination of cumin. Proceedings of the First National Conference on Cumin, 84-85 (In Persian).
  24. Dashti, M., Sattar, N. and Qurbanzadeh, E. 2007. Effect of drought and salinity stresses on germination of Althaea officinalis. First National Conference on Medicinal Plants and Sustainable Agriculture, 259 pp (In Persian).
  25. Zhu, J.K. 2001. Plant salt tolerance. Trends in Plant Science, 6: 66-71.
  26. Rajabi, R. 2001. Germination and growth response of different wheat cultivars to salinity. MSc Thesis, agriculture faculty, University of Tehran. (In Persian)
  27. Gholamian, M., Qamarnia, H., Kehrizi, D. 2018. Investigation of camellia performance under different water salinity regimes in greenhouse conditions. Water and Irrigation Management, 7(2): 333-347. (In Persian)
  28. Safar nejad, A., Alisadr, S. and Hamidi, H. 2007. Effects of salt stress on morphological characters of Nigella (Nigella sativa). Iranian Journal of Rangelands and Forests plant breeding and Genetic Research. 15(1): 75-84. (In Persian)
  29. Michel, B. E. and Kaufman, M. R. 1973. The osmotic potential of polyetylene glycol 6000. Plant Physiology. 51: 914-916.
  30. Alirezaei Naqander, M. Azizi, M, and. Valizade Qalbek, A. 2013. Studying the effect of salinity stress on the characteristics of seed germination and seedling growth of four improved varieties of medicinal basil. Journal of Seed Science and Technology. Second Year, Number 4. Page 44-56. (In Persian)
  31. Haghighi, M., Afifipour, Z., and Mozafarian, M. 2012. The Alleviation Effect of Silicon on Seed Germination and Seedling Growth of Tomato under Salinity Stress. Vegetable Crops Research Bulletin, 76: 119–126.
  32. Huang, J. and Redmann, R.E. 1995. Salt tolerance of Hordeum and Brassica species during germination and early seedling growth. Canadian Journal Plant Science, 75: 59-81.
  33. De, F. and kar, R. K. 1994. Seed germination and seeding growth of mung been under water stress induced by PEG 6000. Seed seince and technology 23. 301-304
  34. Yohannes, G., Kidane, L., Abraha, B., and Beyene, T. 2020. Effect of Salt Stresses on Seed Germination and Early Seedling Growth of Camelina sativa Momona Ethiopian Journal of Science, 12(1): 1-19.
  35. Wang, X. D., Ou-yang, C., Fan, Z., Gao, S., Chen, F., and Tang, L. 2010. Effects of exogenous silicon on seed germination and antioxidant enzyme activi-ties of Momordica charantia under salt stress. Journal of Animal & Plant Sciences, 6 (3): 700-708.
  36. Salami, M.R., Safarnejad, A. and Hamidi, H. 2006. Effect of salinity stress on morphological characters of Cuminum cyminum and Valeriana officinalis. Pajouhesh & Sazandegi. 72: 77-83. (In Persian)
  37. Zehtab-Salmasi, S. 2008. The influence salinity and seed pre-treatment on the germination of German chamomile (Matricaria chamomilla). Research journal of agronomy. 2(2): 28-30. (In Persian)
  38. Huang; P., He; L., Abbas; A., Hussain; S., Du; D., Hafeez; M., Balooch; S., Noreen; Z., Ren; X.; Rafiq, M., and Saqi; M. 2021. Seed priming with sorghum water extract improves the performance of Camelina (Camelina sativa (L.) Crantz.) under salt stress . Plants, 10(749), 1–.15. doi:10.3390/plants10040749
  39. Yazdani Biooki, R., Rezvani Moghaddam, P., Khazai, H.R. and Ghorbani, R. 2010. Effect of drought and salinity stress in seed germination of Silybum marianum. Iranian Journal of Field Crops Research, 8: 12-19 (In Persian)
  40. Redmann, R.E., Ql, M.Q and Belyk, M. 1994. Growth of transgenic and standard canola (Brassica napus) varieties in response to soil salinity. Plant Science, 74: 797-799.
  41. Puntarulo, S., Galleano, M., Sanchez, R. A. and Boveris, A. 1991. Superoxide anion and hydrogen peroxide metabolism in soybean embryonic axes during germination. Biochemica et Biophisica Acta, 1047, 277-283.
  42. Appel, K. and Hirt, H. 2004. Reactive oxygen species: metabolism, oxidative stress and signal transduction. Plant Biology. 55: 373-399
  43. Kaya, C., Ydemir, S., Sonmes, O., Ashraf, M. and Dikilitas, M. 2013. Regulation of growth and some key physiological processes in salt- stressed maize (Zea mays L.) plants by exogenous application of asparagine and glycerol. Acta Botanica Croatica. 72: 157–168.
  44. Enteshari, S., Alishavandi, R. and Delavar, K. 2011. Interactive effects of silicon and NaCl on some hysiological and biochemical parameters in Borago officinalis Iranian Journal of Plant Physiology 2(1): 315-320.
  45. Azizi, M., Abdulzadeh, A., Mehraban Jovini, P., and Sadeghipour, H.R. 2017. Investigating the effect of silica on improving tolerance to sodium chloride salinity stress in one-year alfalfa (Medicago scutellata L.). Journal of Agricultural Research of Iran. 14. (1): 133-143 (In Persian).