نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد فیزیک و حفاظت خاک (دانش آموخته دانشگاه شهید باهنر کرمان)، ایران

2 دانشیار گروه مهندسی طبیعت، دانشکده کشاورزی شیروان، دانشگاه بجنورد، ایران

3 دانشیار گروه علوم خاک، دانشگاه شهید باهنر کرمان، ایران

4 استاد گروه علوم خاک، دانشگاه شهید باهنر کرمان، ایران

چکیده

آگاهی داشتن از نحوه تغییرپذیری متغیرهای خاکی یکی از پیش‌شرط‌های مدیریت صحیح منابع کودی در یک کشاورزی پایدار قلمداد می گردد. لذا هدف از این پژوهش ارائه روشی نوین برای ارزیابی تغییرات مکانی برخی از ویژگیهای شیمیایی خاک با استفاده از تابع مفصل میباشد. بدین منظور با استفاده از روش شبکهبندی، نمونهبرداری از منطقهای به وسعت 484 هکتار در 10 کیلومتری غرب شهرستان بافت صورت گرفت، بدین صورت که منطقه به طور کاملاً منظم تقسیمبندی شد که مساحت هر شبکه 4 هکتار بود. سپس از هر شبکه به طور تصادفی یک نمونه خاک و در مجموع 121 نمونه از لایه سطحی خاک تهیه شد. پس از هوا خشک نمودن نمونهها و عبور از الک 2 میلیمتری، فسفر قابل جذب و پتاسیم قابل جذب اندازهگیری شد. برای درونیابی به روش تابع مفصل از چهار تابع مفصل ارشمیدسی شامل توابع کلایتون، فرانک، گامبل و جو استفاده شد. تحلیل نتایج با استفاده از معیارهای میانگین ریشه دوم مربعات استاندارد (RMSE)، ضریب تبیین (R2)، میانگین خطای مطلق(MAE) و میانگین خطای انحراف (MBE) با درونیابهای انواع کریجینگ و روش IDW مورد مقایسه قرار گرفت. نتایج نشان داد که روش وزن دهی عکس فاصله (IDW) با دارا بودن مقدار ضریب همبستگی (76/0=R2) و ریشه مجموع مربعات خطا (93/2=RMSE) ضعیفترین تخمینها را ارائه داده است در حالی که روش تابع مفصل میانه با دارا بودن 84/0=R2 و 59/2=RMSE بهترین دقت در انجام تخمین ها را ارائه نمود و بنابراین می تواند جایگزین خوبی برای روشهای کلاسیک میانیابی قلمداد گردد.

کلیدواژه‌ها

عنوان مقاله [English]

Feasibility of using Copula function in predicting soil available phosphorus and potassium

نویسندگان [English]

  • Ehsan Ghojehpour 1
  • Vahidreza Jalali 2
  • Azam Jafari 3
  • Majid Mahmoodabadi 4

1 M.Sc. Graduated. Student of Soil Physics and Conservation, Faculty of Agriculture, Shahid Bahonar University of Kerman.

2 Associate Professor, Department of Nature engineering, Shirvan Faculty of Agriculture, University of Bojnord.

3 Associate Professor, Department of Soil Science, Faculty of Agriculture, Shahid Bahonar University of Kerman.

4 Professor, Department of Soil Science, Faculty of Agriculture, Shahid Bahonar University of Kerman.

چکیده [English]

Introduction Spatial and temporal variations of soil characteristics occur in large and small scales. Investigating the variability of soil parameters is considered as one of the requirements for proper management of fertilizer resources in a sustainable agricultural system. Studying of these variation is very time-consuming and costly especially in large scales. In order to the fast and reliable determination of the soil properties, various interpolation techniques have been developed and applied. The most widely used interpolation technique is the different Kriging types. The copula function is one of the new interpolation techniques that are recently used in sciences such as hydrology. Thus, the aim of this research was to evaluate the spatial variation of some soil chemical properties using the copula function and comparisons with geostatistics techniques.
Materials and Methods Sampling by regular networking was done in an area of 484 ha located in 10 km far from the west of Baft city, located in Kerman province, central Iran (latitude of 29° 15′ N and longitude of 56° 29′ E). In the studied area, three agricultural, pasture and industrial sites are located nearby. The common crops of the region are wheat, barley, alfalfa, legumes and orchards of walnuts, pomegranates, almonds and grapes. The average height of the studied area is 2270 meters above sea level, the average annual temperature of the area is 16 degrees Celsius, and the average annual precipitation of the area is 247 mm. The soil used for the experiment was collected from 0 to 20 cm depth of the field. 121 soil samples were air-dried and, some physical and chemical properties were measured. In order to fit the Copula function to the data, first the appropriate marginal distribution function should be fitted to the data. For this purpose, three tests were used: Kolmogorov-Smirnov, Anderson-Darling and Chi-Square. The mentioned tests were carried out in the EasyFit 5.5 statistical software. By fitting the best marginal distribution function, the cumulative value of the marginal distribution function is calculated for each data. After calculating the above values, detailed functions can be fitted to the data. Finally, the accuracy of each interpolation method was evaluated according to the root mean square Error (RMSE), coefficient of determination (R2), mean absolute error (MAE) and mean biass error (MBE) indices.
Results and Discussion In all types of geostatistical methods, the first step in interpolation is to fit the semivaiogram to the measured data, so after normalizing the data and validating the models, the appropriate model was selected for fitting the semivaiogram. Among the measured parameters, Pava and Kava semivaiogram followed spherical model and the interpolation of the above variables was done on the basis of this model. Copula analysis showed that the available phosphorous and potassium variables followed from the Wakeby and gamma distribution function, respectively. Also, based on the Pearson correlation coefficient, the correlation between pairs of points was less than 2000 m and the distance more than 2000 m was known as an independent distance. Based on the validation criteria for Pava parameter, Median copula function, Average copula function, IDW, Ordinary Kriging, Disjunctive Kriging, Universal Kriging and Simple Kriging have better estimates, respectively, and in the same way, the best interpolator for Kava parameter Median copula function, Average copula function, Ordinary Kriging, Universal Kriging, Disjunctive Kriging, Simple Kriging and IDW were determined, respectively. The estimation performance based on the coefficient of determination (R2) showed that value of this coefficient for copula function for available phosphorous and potassium were 5% and 4% greater than conventional geostatistics techniques. Also, the error of estimation was less for copula function indicating the better performance of copula to estimate the mentioned soil properties
Conclusion This study was performed to investigate the Feasibility study of Copula function in predicting some soil nutrients and comprising this method with widely used methods of geostatistics. Our results demonstrated that the copula function method is more capable than the classical geostatistical methods in estimating soil properties due to the non-dependence of this method on the normality of the data distribution and outlier data. Therefore, with the help of this method, having a reliable and high-quality data bank of soil characteristics, acceptable maps of other soil characteristics can be presented at various scales.

کلیدواژه‌ها [English]

  • Archimedean copula functions (Frank
  • Clayton
  • Gamble and Joe)
  • kriging
  • interpolation
  1. Aas K., Czado C., Frigessi A., and Bakken H. (2009). Pair-copula constructions of multiple dependence. Insurance: Mathematics and economics, 44(2): 182-198
  2. Abbaszadeh F, Jalali V R, Jafari A. Efficiency Evaluation of Different Interpolation Procedures in Spatial Distribution of Copper in Hormuz Island Soils. GEJ 2016; 7 (2) :1-7. (In Persian with English abstract)
  3. Ahmadi, F., Radmanesh, F., Parham, G. A., & Mirabbasi Najaf Abadi, R. (2017). Application of Archimedean and Extreme values Copula Functions for Multivariate Analysis of Low Flows in Dez Basin. Water and Soil31(4), 1031-1045. (In Persian with English abstract)
  4. Bárdossy, A. (2006). Copula-based geostatistical models for groundwater quality parameters. Water Resources Research, 42(11).
  5. Bárdossy, A. and Pegram, G. (2014). Infilling missing precipitation records – A comparison of a new copula-based method with other techniques. Journal of Hydrology, 519, Part A(0): 1162-1170.
  6. Etminan, S., Jalali, V., Mahmoodabadi, M. et al. (2021). Assessing an efficient hybrid of Monte Carlo technique (GSA-GLUE) in Uncertainty and Sensitivity Analysis of vanGenuchten Soil Moisture Characteristics Curve. Computational Geosciences, 25:503–514. https://doi.org/10.1007/s10596-020-10019-w
  7. Ganjalikhani, M., Zounemat-Kermani, M., Rezapour, M., & Rahnama, M. B. (2016). Evaluation of Copula Performance in Groundwater Quality Zoning (Case Study: Kerman and Ravar regions). Iranian Journal of Soil and Water Research47(3), 551-560. (In Persian with English abstract)
  8. Ghojehpour, E., Jafari, A., Jalali, V., & Mahmoudabadi, M. (2022). Evaluation of the Performance of Copula Function in Estimating Some Soil Properties. Applied Soil Research, 10(1), 82-97. (In Persian with English abstract)
  9. Ghojehpour, E., Jalali, V., Jafari, A., Mahmoudabadi, M. (2020). Copula function and its application to estimate sand and bulk density of soil. Journal of Soil Management and Sustainable Production, 10(1), 47-64. (In Persian with English abstract)
  10. Gräler, B. and Pebesma, E. (2011). The pair-copula construction for spatial data: a new approach to model spatial dependency. Procedia Environmental Sciences, 7(0): 206-211.
  11. Hasani Pak, A. 2010. Geostatistics. University of Tehran Publication. 314p (In Persian with English abstract)
  12. Haslauer, E., Blaschke, T., & Biberacher, M. (2014). GIS-based Backcasting-A Method for Parameterisation of Sustainable Spatial Planning and Resource Management. In Doctoral Consortium on Simulation and Modeling Methodologies, Technologies and Applications, 2: 3-8.
  13. Hofert M., Kojadinovic I., Maechler M., Yan J., and Nešlehová G. (2018). Copula: Multivariate Dependence with Copulas. R package (Version 0.999-19).
  14. Kong, X. M., Huang, G. H., Fan, Y. R. and Li, Y. P. (2014). Maximum entropy-Gumbel-Hougaard copula method for simulation of monthly streamflow in Xiangxi river, China. Stochastic Environmental Research and Risk Assessment. 14(2): 1-14.
  15. Li J. (2010). Application of copulas as a new geostatistical tool. PhD thesis, University of Stuttgart, Faculty of Civil and Environmental Engineering.
  16. Moazami, S., Golian, S., Kavianpour, M. R. and Hong, Y. (2014). Uncertainty analysis of bias from satellite rainfall estimates using copula method. Atmospheric Research, 137(0): 145-166.
  17. Najafi-Ghiri, M., Nowzari, S., Niksirat, SH., & Soleimanpur, L. (2017). Effects of Different Plant Residues and Manures on Potassium Pools Distribution of Two Clayey Soils under Different Moisture Conditions. Water and Soil Science. 27(3), 161-172. (In Persian with English abstract)
  18. Nelsen, R. B. (2007). An introduction to copulas, Springer.
  19. Olsen, S. R. and Sommers, J. F. (1982). Phosphorus. P 403-430, In: A.L. Page (ed.), Methods of soil Analysis. Agron. No. 9, part 2: Chemical and microbiological properties, 2nd edition, Am. Soc. Agron., Madison, WI, USA.
  20. Rezaie, H., Mirabbasi, R., Kkhanitemeliyeh, Z. (2020). Bivariate Analysis of Drought Risk in West and Northwest of Iran Using PSO Algorithm and Copula Functions. Journal of Water and Soil Conservation, 27(3), 125-144. (In Persian with English abstract)
  21. Schmidt, T. (2007). Coping with copulas. Copulas-From Theory to Application in Finance: 3-34.
  22. Shafaee, M., Fakheri Fard, A., Din Pajooh, E., & Mirabbasi, R. (2017). Modeling rainfall event characteristics using D-vine copulas. Journal of Water and Soil Resources Conservation6(2), 45-58. (In Persian with English abstract)
  23. Sklar, A. (1959) Fonctions de Répartition à n Dimensions et Leurs Marges. Publications de l’Institut Statistique de l’Université de Paris, 8, 229-231.
  24. Wilding L.P. (1985). Spatial variability: its documentation accommodation and implication to soil surveys. In: Nielsen D.R. and Bouma J. (eds.) Soil Spatial Variability. Pudoc. The Netherlands. pp. 166–194.