نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد، گروه مهندسی ماشین‌های کشاورزی و مکانیزاسیون، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ملاثانی،ایران

2 دانشیار گروه مهندسی ماشین;های کشاورزی و مکانیزاسیون، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، اهواز ملاثانی

3 استادیار پژوهش، بخش فنی و مهندسی کشاورزی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی خوزستان، سازمان تحقیقات، آموزش

4 استادیار گروه مهندسی تولید و ژنتیک گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ملاثانی، ایران

چکیده

این مطالعه با هدف بررسی تاثیر تناوب ‌زراعی در مزارع گندم با استفاده از تصاویر ماهواره‌ای در منطقه شاوور استان خوزستان و در سال زراعی 1400_1399 انجام گردید. داده ‌برداری این تحقیق در قالب طرح کاملا تصادفی با سه تکرار انجام شد. تیمارها شامل چهار تناوب ‌زراعی گندم_گندم_گندم، گندم_کلزا_گندم، گندم_برنج_گندم و گندم_شبدر_گندم بودند. مقایسه میانگین شاخص‌ طیفیNDVI برگرفته از تصاویر ماهواره‌ای در قبل و بعد از تناوب نشان داد که تناوب گندم_گندم_گندم پس از گذشت دوسال زراعی منجر به کاهش 10 درصد و همچنین استفاده از برنج در تناوب گندم_برنج_گندم منجر به کاهش 50 درصد عملکرد گندم می‌گردد؛ اما استفاده از کلزا در تناوب (گندم_کلزا_گندم) و شبدر در تناوب (گندم_شبدر_گندم) به‌ترتیب منجر به افزایش 2 و 30 درصد عملکرد گندم شد. مقایسه میانگین ضریب‌ پراکنش شاخص‌ طیفیNDVI برگرفته از تصاویر ماهواره‌ای در زمان قبل و بعد از اعمال تناوب نشان داد که ضریب پراکنش در کشت مداوم گندم در اثر کاهش عملکرد، منجر به افزایش 27 درصد و در تناوب گندم_برنج_گندم در اثر کاهش عملکرد، منجر به افزایش چشمگیری شد. اما ضریب‌ پراکنش در دو تناوب گندم_کلزا_گندم و تناوب گندم_شبدر_گندم در اثر افزایش عملکرد، به‌ترتیب منجر به کاهش 57 و 32 درصدی شده است. در حالت کلی نتایج ناشی از بررسی تصاویر ماهواره‌ای نشان داد که با اعمال تناوب درست نقاط ضعیف در مزرعه عکس‌العملی بیشتری نسبت به نقاط قوی مزرعه در مقابل تغییر شرایط نشان می‌دهد.

کلیدواژه‌ها

عنوان مقاله [English]

Evaluation of the effect of crop rotation on the yield of wheat fields using satellite images

نویسندگان [English]

  • mona daghlavi 1
  • Mahmoud Ghasemi Nejad Raeini 2
  • Naim Loveimi 3
  • amin lotfi jalal-abadi 4

1 MSc Graduated, Department of Agricultural Machinery Engineering and Mechanization, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani. Iran

2 Associate Professor, Department of Agricultural Machinery and Mechanization Engineering, Khuzestan Agriculture Science and Natural Resources University (KhAU), Khuzestan, Iran

3 Assistant Professor, Agricultural Engineering Research Department, Khuzestan Agricultural and Natural Resources Research and Education center, AREEO, Ahvaz, Iran

4 Assistant Professor, Department of Plant Production Engineering and Genetics, Faculty of Agricultura, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran

چکیده [English]

Introduction Achieve more production, efforts should be made to increase yield per hectare. One of the things that play an important role in increasing crop production, disease control, chastity control, improving soil fertility and structure is the implementation of proper crop rotation. Crop rotation increases the efficiency of production and yield through the continuity of soil vegetation, more efficient water use, preservation of soil nutrients, increase of soil organic matter and stability of soil grains, reduction of pests and diseases, and better control of weeds. Also, data collection in the conducted research is done in a traditional way, which is usually difficult, limited and very time-consuming due to the dispersion of farms and their size.
Materials and Methods His study was conducted to investigate the effect of crop rotations on wheat yield using satellite images in three crop years 2017-2018, 2019-2028, 2019-2020 in the fields of Shavor region of Khuzestan province. In this research, all the evaluated images are related to the Sentinel-2 satellite and all these images were obtained from the US Geological Survey website. The satellite images were taken at the flowering stage of wheat, and images without clouds and fog were used on February 25, 2019 (for the year before rotation) and February 19, 2021 (for the year after rotation). Also, for pre-processing and processing and extracting information, SNAP software, Sen2Cor and ENVI plugin were used, respectively. The steps of this research were done in three steps. In the first stage, five plant spectral indices EVI, GNDVI, GARI, NDVI and RVI were evaluated to identify the best index to estimate wheat yield. The spectral index, which has a higher correlation with the yield of wheat, was chosen as the base index and was used to continue the research. In the second stage, three farms were randomly selected from each rotation to evaluate wheat yield after their application. In this section, variance analysis was performed in the form of a completely random design in three replications (one replication for each farm). The treatments include four alternations of wheat-wheat-wheat, wheat-canola-wheat, wheat-rice-wheat and wheat-clover-wheat. At this stage, the comparison of means was done by Duncan's multi-range test and in the MSTATC software environment. The third stage is the changes in wheat yield in each rotation in two times before and after applying that rotation. For this purpose, the changes of the base spectral index before and after the application of periodicity were set as criteria.
Results The results of variance analysis of five spectral indices studied in this research showed that the coefficient of explanation of each of these indices with wheat yield at the time of flowering is NDVI with 76, RVI with 73, GARI with 71, EVI with 60 and GNDVI with 57 respectively. In this research, the NDVI spectral index has the highest correlation, R2 of 76%, and the minimum error, RMSE of 0.547 earned the results showed that the average and the dispersion coefficient of the NDVI spectral index of intervals have a significant difference at the probability level of 1%. So that in terms of the average, the lowest average of the NDVI spectral index is in wheat-rice-wheat rotation with a rate of 0.2650 and the highest average is in the wheat-clover-wheat rotation with a rate of 0.5603. According to the distribution coefficient, the minimum and maximum values belonged to the rotation of wheat-canola-wheat with the rate of 0.0505 and wheat-rice-wheat with the rate of 0.1970. The results of the corresponding comparison before and after the application of each rotation showed that not observing the rotation and wheat cultivation after two crop years led to a 10% decrease and the use of rice in the crop rotation led to a 50% decrease in the NDVI spectral index. Also, the use of rapeseed and clover in crop rotations has led to an increase of 2 and 30% in NDVI spectral index compared to before rotation. The results of the dispersion coefficient of the NDVI spectral index in the time before and after the application of rotation showed that in the continuous cultivation of wheat, the dispersion coefficient due to the decrease in yield uniformity in different parts of the field led to an increase of 27% and in the rotation of wheat-rice-wheat it led to an increase of 152 became a percentage However, the distribution coefficient of wheat-canola-wheat rotation and wheat-clover-wheat rotation resulted in a decrease of 57 and 32%, respectively, due to the increase in yield uniformity in different parts of the field.
Conclusion Heat is one of the strategic products, and the evaluation of different rotations is of particular importance in increasing its yield. In this research, five plant spectral indices EVI, GNDVI, GARI, NDVI and RVI were investigated in order to identify the base index for wheat yield estimation. The results of the analysis of these indices showed that the NDVI spectral index with an explanation coefficient of 76% has the highest correlation with wheat yield. The comparison results of the NDVI spectral index correspondingly in each rotation in two states before and after the rotation showed that the continuous cultivation of wheat in an agricultural land after two crop years led to a 10% decrease in the NDVI spectral index and the use of rice in the wheat-rice rotation. - Wheat leads to a 50% decrease in the NDVI spectral index of wheat; But the use of canola and clover in the rotation of wheat-canola-wheat and wheat-clover-wheat led to an increase of 2% and 30% of NDVI spectral index, respectively. Also, the results of the comparison of the dispersion coefficient of the NDVI spectral index before and after the application of rotation showed that in the continuous cultivation of wheat, the dispersion coefficient increased by 27% due to the decrease in yield uniformity in different parts of the field, and in the wheat-rice-wheat rotation, the dispersion coefficient also as a result of the reduction of yield uniformity in different parts of the farm, it led to an increase of 152%.

کلیدواژه‌ها [English]

  • Spectral Index
  • NDVI index
  • Sentinel-2 satellite
  • Rotation
  • Yield changes
  1. Alavipanah, S., Ehsani, A., Metinfar, H., Rafiei, A., Amiri, R. 2017. Comparison of information content of TM and ETM + sensor bands in desert and urban environments of Iran. Geography research. 38 (1): 56_ 65.
  2. Akbarimoghadam, H., Ghalavi, M., Ghanbarinajar, A., Rostami, H., Kohkan, S. H. A., Podineh, A., Akbarimoghadam, A. and Lakzaei, M. 2010. Effect of crop rotation systems and levels of nitrogen fertilizer on wheat yield in the Sistan region. Proceeding of the 11th Iranian Crop Science Congress. Shahid Beheshti University. 24-26 July, Tehran, Iran.
  3. Alizadeh Rabie, H. 2014. Remote Sensing (Principles and Application). Samt Press. Tehran.
  4. Aghapour Sabbaghi, M., Rafiei, H. 2019. The effect of optimal crop rotation on farmers income stability and Agricultural Economics Research Journal.2(1)
  5. Buschmann, C., and E. Nagel. 1993. In vivo spectroscopy and internal optics of leaves as basis for remote sensing of vegetation. International Journal of Remote Sensing 14: 711–722.
  6. Birth, G. S., and G. R. McVey. 1968. Measuring color of growing turf with a reflectance spectrophotometer. Agronomy Journal 60: 640-649.
  7. Fatemi, B., and Rezaei, Y. (2006). Basic of Remote Sensing. Azade publication. 257 p.
  8. Froughifar H, Jafarzadah AA, Torabi Gelsefidi H and Aliasgharzadah N, 2012. Effect of different landforms on spatial variability and frequency distribution of soil diological droperties in Tabriz plain. Water and Soil Science- University of Tabriz 21(4): 35-52.
  9. Franch, B., Vermote, E.F., Becker-Reshef, I., Claverie, M., Huang, J., Zhang, J., Justice, C. and Sobrino, J.A. (2015). Improving the timeliness of winter wheat production forecast in the United States of America, Ukraine and China usingMODIS data and NCAR Growing Degree Day information. Remote Sensing of Environment 161 (2015): 131– 148.
  10. Freebairn, D. M., R. J. Loch and A. L. Cagle. 1993. Tillage methods and soil water conservation in Australia. Soil and Tillage Research 27: 303-325
  11. Gitelson, A. A., Y. J. Kaufman, R. Stark, and D. Rundquist. 2002. Novel algorithms for remote estimation of vegetative fraction. Remote Sensing of Environment 80: 76–87.
  12. Ghafari, A. 2012. Studying the rotation of Sardari wheat with oilseed sunflower, chickpea and fallow under dry conditions. Seedling and Seed Scientific Research Journal. 18 (2): 143-150.
  13. Huete, A. R., C. Justice, and W. Van Leeuwen. 1996. MODIS vegetation index (mod13). Algorithm theoretical basis document. Version 2. NASA Goddard Space Flight Center. Washington D. C.
  14. Jafarizadeh, Sh. 2013. Agricultural insurance. Agricultural characteristics of bread wheat varieties in Khuzestan province http://agribim.blogfa.
  15. Jaranoush, M H., Broumand Nesab, S., Naseri, A A., Pakparvar, M., taghvaian, s. 2018. Application of remote sensing index in estimating crown cover, biomass and wheat cultivation date. Iran Irrigation and Drainage Journal. 14 (1): 204-193
  16. Kim, D and Kaluarachchi, J. 2015. Validating FAO AquaCrop using Landsat images and regional crop information. Agricultural Water Management. 149: 143-155.
  17. Kamali, L., Kaviani, A., Nazari, B. and Liaqat, A.M. 2017. Determining wheat yield using Landsat 8 satellite images (case study: Mughan plain). Iran water and soil research. 49(1): 1031_1051.
  18. Karnieli A, Bayasgalan M, Bayarjargal Y, Agam N, Khudulmur S, Tucker C. 2006. Comments on the use of the vegetation health index over Mongolia. International Journal of Remote Sensing, 27(10): 2017-2024.
  19. LotfAli Aineh, G A., Asadi, H., Gusheh, M.A, Mousavi fazl, M H., Dehghani, A., Pouradar, R., Gilani, A A., Khawaja Azadeh, Y., Hamuleh Shalal, H. 2013. Agricultural and economic survey of the impact of crop rotation in South Khuzestan. Research institute for improvement and preparation of seedlings and seeds. Karaj. Iran.
  20. Lotfa Ali Aineh, G., Asadi, H., Gusheh, M., Mousavifazl, M., Dehghani, A., Pourader, R., Gilani, A., Khajeh Azadeh, Y., Hamuleh Shelal, H. 2013. Agricultural and economic survey of the impact of crop rotation in South Khuzestan. Research institute for improvement and preparation of seedlings and seeds. Karaj. Iran.
  21. Languille, F., A. Gaudel1, B. Vidal, R. Binet, V. Poulain, and T. Trémas, 2017. Sentinel-2B Image Quality commissioning phase results and Sentinel2 constellation performances. Conference on Sensors, Systems, and Next-Generation Satellites XXI Location: Warsaw, POLAND Date: SEP 11-14, 2017.
  22. Loveimi, N., Asadullah, A., Bagheri, N. and Haji Ahmad, A. 2018.Evaluation of several spectral indices to estimate the yield of rapeseed using Centile_2 sensor images. Agricultural machinery engineering department. University of Tehran. 11 (2): 464-480.
  23. Mubasheri, M. 2015. Basics of physics in remote sensing and satellite technology. Khwaja Nasiruddin Tusi University.
  24. Matinfar, H.R. 2013. Modeling wheat yield estimation base upon spectral data and field measurement, case study: Razan plain, Iran. Technical Journal of Engineering and Applied Sciences. 17(3): 2123-2130.
  25. Mohammadi, E, Kamkar, B,.and Abdi, O. (2015). Comparison of geostatistical- and remote sensing data-based methods in wheat yield predication in some of growing stages (A case study: Nemooneh filed, Golestan province). Electronic journal of crop production. Vol. 8(2) Page 51-76.
  26. Mazaheri, D. and N. Majnonhosseini. 2003. Fundamental of agronomy. Tehran University Press.320 pp.
  27. Reynolds, M. P.,Delgado, m. I., Gutierrez-Rosriguez, M., Largue-Saavedra, A., 2000. Photosynthesis of Wheat and Warm, irrigated environment. I.genetic diversity and crop productivity. Field Crops Research, 66:37-50.
  28. Rouse, J. W., R. H. Haas, J. A. Schell, and D. W. Deering. 1974. Monitoring vegetation systems in the Great Plains with ERTS. Third Earth Resources Technology Satellite (ERTS) Symposium, NASA SP-351 I: 309-317. Washington D. C. USA.
  29. Siadat, S.A., Sadeghzadeh Hamaiti, S., Fathi, Q.A. and Abdali Mashhadi, AR. 2018. Determining the most suitable crop rotation system for Ahvaz region. Journal of Agricultural Sciences: 11 (2): 174-190.
  30. Sakamoto, T., Yokozawa, M., Toritani, H., Shibayama, M., Ishitsuka, N. and Ohno, H. 2005, A crop phenology detection method using time-series MODIS data, Remote Sensing of Environment. 96(3): 366-374.
  31. Solaimani, K., Shokrain, F., Tamartash, R., and Banihashemi, M. 2001. Landsat ETM+ based assessment of vegetation indices in highland environment. Journal of Advances in Developmental Research, 4(7): 2_79.
  32. Sanai nejad, H., Astarai, A., Mir hosseini, P., Agriculture, A., Ghaemi, M. 2018. Using satellite images for vegetation. Fifth National Congress. Ferdowsi University of Mashhad.
  33. Siadat, S A., Sadeghzadeh Hamaiti, S., Fathi, Q E. Abdali Mashhadi, A. 2018. Determining the most suitable crop rotation system for Ahvaz region. Journal of Agricultural Sciences: 11 (2): 174-192.
  34. Zare Faizabadi, A. and Azizi, M. 2012. The effect of different crop rotations on yield in the cold climate of Razavi Khorasan. Journal of Seedling and Seed Agriculture, 261-275: 28.
  35. Zare, Sh., Zare Faizabadi, A., Siyohi, M. 2013. Reviewing the yield and economic analysis of wheat-based crop rotation systems. Seedling and seed cultivation magazine. 2_30(1): 33_45.
  36. Ziloui, N., Ahmadi, A., Bagheri Dehabadi, M., Mohammad Murad Tarem, H., Nouri, J. 2013. Importance of flowering and grain filling stages in increasing wheat yield. The first international congress and the 13th national congress of agricultural science and plant breeding and the third congress of seed science and technology. Karaj.
  37. Zahirnia, A., H. R. Matinfar, and M. Zinvand. 2016. Prediction of canola yield base on Landsat-8 in west south of Khouzestan province. 4th International conference on applied research in agricultural sciences. Tehran.