نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد، علوم و مهندسی باغبانی، دانشکده کشاورزی و محیط زیست، دانشگاه اراک، اراک

2 دانشیار، گروه علوم و مهندسی باغبانی، دانشکده کشاورزی و محیط زیست، دانشگاه اراک، اراک.

چکیده

استفاده از محرک‌های ریشه‌زایی پیامدهای اقتصادی مثبتی برای پرورش‌دهندگان گیاهان دارد، زیرا استفاده از آنها می‌تواند سبب کاهش هزینه-هاو بهبود عملکرد گیاهان شود. با توجه به سرعت رشد کند سانسوریا، این گیاه نیازمند محرک‌های رشد برای به صرفه بودن تولید تجاری آن است. در این پژوهش کاربرد بیوچار نیشکر (5 و 10 درصد) و مخلوط سه گونه قارچ‌های میکوریز آربوسکولار (6 و 12 درصد) با هدف افزایش سرعت ازدیاد دو رقم سانسوریا (شمشیری ابلق و نقره‌ای) از هر واحد قلمه به‌صورت آزمایش فاکتوریل در قالب طرح کاملا تصادفی با سه تکرار مورد بررسی قرار گرفت. 8 ماه پس از کشت، صفاتی مانند زمان ریشه‌‌زایی، تعداد و طول ریشه، طول بلندترین ریشه، زمان انگیزش جوانه، تعداد پاجوش، طول و قطر پاجوش، میزان پوسیدگی قلمه، تعداد برگ، اندازه کالوس، وزن تر ریشه و برگ، وزن خشک ریشه و برگ، میزان کلونیزاسیون ریشه‌ توسط قارچ‌های میکوریز آربوسکولار، محتوای نسبی آب، نشت الکترولیت برگ، رنگیزه کلروفیل و درصد زیست توده اندازه‌گیری شدند. نتایج نشان داد کاربرد 10 درصد بیوچار در بستر کشت سانسوریا اثر افزایشی بر بیشتر صفات هر دو رقم داشت؛ اما میزان پوسیدگی این دو رقم را نیز افزایش داد. بهترین تیمار برای قلمه‌های شمشیری ابلق و سانسوریا نقره‌ای 5 درصد بیوچار و 6 درصد مخلوط قارچ‌های میکوریز آربوسکولار بود. رقم نقره‌ای در بیشتر صفات نسبت به شمشیری ابلق موفق‌تر عمل کرد. با کاربرد 10 درصد بیوچار و 12 درصد مخلوط قارچ‌های میکوریز آربوسکولار، 80 درصد کلونیزاسیون مشاهده شد که نشان‌دهنده برهمکنش موفق قارچ با بیوچار در ازدیاد سانسوریا می‌باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Application effect of bagasse biochar and Arbuscular mychorrhizal fungi in commercial propagation of Sansevieria trifaciata variateis

نویسندگان [English]

  • Parisa Khajeh 1
  • Mina Taghizadeh 2

1 Horticultural science, faculty of agricultural and natural resources, Arak University, Arak, Iran.

2 Horticultural science, faculty of agricultural and natural resources, Arak University, Arak, Iran.

چکیده [English]

Introduction Sansevieria trifasciata is a perennial plant from the liliaceae family, which originates from tropical and semi-tropical regions of the world. Sansevieria trifasciata variateis are one of the most popular ornamental indoor plants due to having types with striped leaves. Today, conventional propagation methods are not adequate to meet the marketable requests of Sansevieria trifasciata due to the slow growth of cutting. So, it is conceivable to use rooting and growth stimulator agents. This study aimed to investigate the effects of arbuscular mycorrhiza and biochar application on some morphophysiological parameters in Sansevieria trifasciata var. cuttings.
Materials and Methods This research was conducted in the greenhouse of the faculty of agriculture and environmental science of Arak University with controlled conditions of 25 ◦C, 70% humidity and 10,000 lux of light. The effect of biochar application (5 and 10%) and arbuscular mycorrhizal fungi (Glomus etunicatum, Glomus intraradices, Glomus mossea) (6 and 12%) was investigated on propagation and growth of Sansevieria trifaciata var. Laurentii and Sansevieria trifaciata var. Moonshine cutting. The experiment was conducted as factorial an in a completely randomized design at three replicates. The leaf cutting with V-shape end were keep on the lab condition for two days to callus initiation of wound surface. Subsequiently, healed cutting were cultured in pots that were containing cocopeat-perlite and different treatments of arbuscular mycorrhiza and biochar. Morphological and physiological traits were measuremed after 8 months of cultivation, which were included rooting and bud stimulation time, roots number and length, length of the longest root, buds number, length, anddiameter, the amount of cutting rot, the number of leaves, the size of callus based on the rating of 1 to 3, fresh weight (FW) of roots and leaves, the dry weight (DW) of roots and leaves, relative water content (RWC), electrolyte leakage, chlorophyll pigment. Arbuscular mycorrhizal root colonization was determinded by grid-line intersect method.
Results and Discussion The results showed that the application of 10% biochar in culture bed had an increasing effect on leaf number, root biomass percentage, root colonization percentage and leaf dry weight in both cultivars but also caused to increase the decay rate of the cuttings of these two cultivars. Application of 6% arbuscular mycorrhizal fingi increased the number of buds, root colonization and bud motivation time, and led to decrease leaf biomass and cuttings rot percentage. The root colonization decreased at lower application level of arbuscular mycorrhizal fungi and biochar. The maximum root colonization (80%) was observed in the culture medium with 10% biochar and 12% arbuscular mycorrhiza. The application of the arbuscular mycorrhizal fungi in the medium of Sansevieria trifaciata cuttings directed to an increase in the biomass compared to the control. The amount of leaf electrolyte leakage of leaf was higher (28.37%) by application of 10% biochar in the culture bed compared with the cuttings treated with 5% biochar and control. Plants from the cuttings grown in the bed containing 10% biochar and 6% mycorrhizal inoculum had the highest number of leaves (2.83). It was approximately two folds compared to the control. The leaf electrolyte leakage was higher (28.37%) than the plants obtained from the cuttings treated with 5% biochar and control by application of 10% biochar. The total chlorophyll content of the leaf in both cultivars increased significantly with the application of different concentrations of biochar compared to the control. Biochar application influenced on microbial biomass through altering the soil porosity, soil moisture and temperature. Also, biochar stimulated plant growth through the positive effects on microbial population. These results suggested that the applications of biochar at an appropriate proportion could change plant growth and microbial community.
Conclusion Biochar and arbuscular mycorrhizal fungi by establishing a symbiotic relationship between fungus and root, stimulated rooting growth. These treatments were able to root in different cultivars of Sansevieria trifaciata propagation. Root colonization of arbuscular mycorrhizal fungi was depended on the variety of plant. The applied treatments showed more impact on morphological and physiological traits in Sansevieria trifaciata var. Moonshine than that in Sansevieria trifaciata var. Laurentii cultivar. The rotting of Sansevieria trifaciata var. Laurentii cuttings was more than that of the Sansevieria trifaciata var. Moonshine. The best treatment for Sansevieria trifaciata variateis cuttings was application of 5% biochar and 6% arbuscular mycorrhiza and cultured in cocopeat-perlite bed.

کلیدواژه‌ها [English]

  • Biochar
  • Cutting
  • Mycorrhiza
  • Ornamental plant
  • Rooting
  1. Abbasnasab, Z., and Abedi, M. 2021. Effect of biochar on some morphological and physiological traits in Medicago sativa and Bromus tomentellus. Journal of Plant Process and Function, 10(41), 145-156.‏ In Persian
  2. Adzraku, H. V., Tandoh, P. K., and Zurei, L. H. 2017. Use of biochar as media for propagation of some difficult-to-root ornamental plants. Environment, Earth and Ecology, 1(2).‏
  3. Ahmadi, N. 2012. An investigation on rooting and growth of stem cuttings of rose genotypes show high and low sensitivity to exogenous ethylene treatment. Journal of Crops Improvement, 14(1), 1-11.‏
  4. Alavi, M. A., Hatamzadeh, A., and Ehteshami, S. M. (2014). Effect of bulb inoculation with four species mycorrhizal fungi on quantitative and qualitative yield of two lily species. Iranian Journal of Seed Science and Research, 1(2).‏
  5. Ali, M. A., and Mjeed, A. J. 2017. Biochar and Nitrogen Fertilizers Effects on Growth and Flowering of Garland Chrysanthemum (Chrysanthemum Coronarium L.) Plant. Kurdistan Journal of Applied Research, 2(1), 8-14.‏
  6. Amini, A., Tabari, M., Hosseini. S.M. and Yousefzadeh, H. 2018. Influence of cutting source and hormone on germination stimulation in woody cutting of large-leaf linden. Journal of Natural Ecosystems of Iran, 9. (3):21-33. In Persian
  7. Arab Bafrani, Z., Ghanei-Bafghi, M. J., and Shirmardi, M. 2020. Effect of wood residues of pistachio biochar on growth characteristics of Safflower. Journal of Soil Management and Sustainable Production, 10(3), 73-94.‏ In Persian
  8. Arab, M.A., Taghizadeh M. and Solgi, M. 2018. The effect of symbiosis of arbuscular mycorrhizal fungus and biochar fertilizer on rose yield. Thesis for the degree of (MSc), Arak Faculty of Agriculture and Natural Resources. In Persian
  9. Arnon, D.I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24(1), 1.‏
  10. Asrar, A.A., Abdel-Fattah, G.M., Elhindi, K.M., and Abdel-Salam, E.M. 2014. The impact of arbuscular mychorrhizal fungi in improving growth, flower yield and tolerance of kalanchoe (Kalanchoe blossfeldiana Poelin) plants grown in NaCl-stress conditions. Journal of Food, Agriculture and Environment, 12(1), 105-112.‏
  11. Boostani, H.R., Chorom, M., Moezzi, A.A., and Enayatizamir, N. 2014. Mechanisms of plant growth promoting rhizobacteria (PGPR) and mycorrhizae fungi to enhancement of plant growth under salinity stress: A review. Scientific Journal of Biological Sciences, 3(11), 98-107.
  12. Bos, J. J. 1998. Dracaenaceae. In Flowering Plants, Monocotyledons. Springer, Berlin, Heidelberg, 238-241.
  13. Briggs, C., Breiner, J.M., Graham, R.C. 2012. Physical and Chemical Properties of Pinus ponderosa Charcoal: Implications for Soil Modification. Soil Science, 177, 263-268.
  14. Busse M. D., Fiddler G. O., and Ratcliff A. W. 2004. Ectomycorrhizal formation in herbicide treated soils of differing clay and organic matter content. Water, Air, and Soil Pollution, 152: 23-34
  15. Carter, S., Shackley, S., Sohi, S., Suy, T. B., and Haefele, S. 2013. The impact of biochar application on soil properties and plant growth of pot grown lettuce (Lactuca sativa) and cabbage (Brassica chinensis). Agronomy, 3(2), 404-418.‏
  16. Chen, H., Ma, J., Wei, J., Gong, X., Yu, X., Guo, H., and Zhao, Y. 2018. Biochar increases plant growth and alters microbial communities via regulating the moisture and temperature of green roof substrates. Science of the Total Environment, 63(5), 333 –342.
  17. Chen, J., Wang, W., Fang, J., and Varahramyan, K. 2004. Variable-focusing microlens with microfluidic chip. Journal of Micromechanics and Microengineering, 14(5), 675.‏
  18. Crisan, I., Vidican, R., and Stoian, V. 2017. Utilization of arbuscular mycorrhizae in the cultivation of ornamental plants. Research Journal of Agricultural Science, 49(4), 392-397.‏
  19. Dehestani-Ardakani, M., Khosravi, N., Shirmardi, M., Gholamnezhad, J., and Naserinasab, F. 2021. The effect of biofertilizers and biochar on morphological and physiological properties of Narcissus cv. ‘Shahla’ (Narcissus tazetta L. cv. ‘Shahla’). Journal of Soil and Plant Intraction, 12 (1), 79-93. In Persian
  20. Dewayne, L. I., and T. H. Yeagar. 1991. Propagation of Landscape Plants. University of Florida, Florida Cooperative Extension Service. Circular 579, March, 14p.
  21. Edrisi, B., Arabi, A., and Azimi, M. H. 2017. The Importance of Rootstocks and Rooting Media on Vegetative Propagation of Roses in Stenting Method. Flower and Ornamental Plants, 2(1), 25-34.‏ In Persian
  22. Giovannettti, M., and Mosse, B. 1980. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytologist. 84: 489-500.
  23. Glaser, B., Lehmann, J., and Zech, W. 2002. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal–a review. Biology and Fertility of Soils, 35(4), 219-230.‏
  24. Hartmann, H.T., Kes ter, F.T. and Daviesand, R.L. 2002. Plant propagation principle andpractices. Prentice Hall. 879 P.
  25. Jalili Marandi, R. 2007. Plant growth. Academic Center for Education, Culture and Research West Azerbaijan unit. P: 496.4: 219-221.
  26. Janowska, B., and Andrzejak, R. 2017. Effect of mycorrhizal inoculation on development and flowering of Tagetes patula L.‘Yellow Boy’and Salvia splendens Buc’hoz ex Etl.‘Saluti Red’. Acta Agrobotanica, 70(2).
  27. Janowska, B., Rybus-Zajac, M., Horojdko, M., Andrzejak, R., and Siejak, D. 2016. The effect of mycorrhization on the growth, flowering, content of chloroplast pigments, saccharides and protein in the leaves of Sinningia speciosa (Lodd.) Hiern. Acta Agrophysica, 23(2).
  28. Javaid, A. R. S. H. A. D., and Riaz, T. A. R. I. Q. 2008. Mycorrhizal colonization in different varieties of gladiolus and its relation with plant vegetative and reproductive growth. International Journal of Agriculture and Biology, 10(3), 278-282.‏
  29. Koltai, H. 2010. Mycorrhiza in floriculture: difficulties and opportunities. Symbiosis, 52(2), 55-63.‏
  30. Kormanik, P.P., and McGraw, A.C. 1982. Quantification of vesicular arbuscular mycorrhizae in plant roots. P 37-45, In: N.C. Schenck (Ed.), Methods and Principles of Mycorrhizal Research. The American Phytopathological Society, St. Paul.
  31. Lehmann, J., and Joseph, S. 2009. Biochar for environmental management: science and technology. First ed. Earthscan, London.
  32. Lehmann, J., Pereira da Silva, J., Steiner, C., Nehls, T., Zech, W., and Glaser, B. 2003. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant and Soil, 249(2), 343-357.‏
  33. Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O'Neill, B. J. O. J. F. J. J. E. G., Skjemstad, J.O., Thies, J., Luizão, F.J., Petersen, J., and Neves, E. G. 2006. Black carbon increases cation exchange capacity in soils. Soil science society of America journal, 70(5), 1719-1730.‏
  34. Matsubara, Y., Hasegawa, N., and Fukui, H. 2002. Incidence of Fusarium root rot in asparagus seedlings infected with arbuscular mycorrhizal fungus as affected by several soil amendments. Journal of the Japanese Society for Horticultural Science, 71(3), 370-374.‏
  35. Meir, D., Pivonia, S., Levita, R., Dori, I., and Ganot, L. 2010. Application of mycorrhizae to ornamental horticultural crops: lisianthus (Eustoma gradiflorum) as a test case. Spanish Journal of Agricultural Research, (1), 5-10.‏
  36. Mia, S., Dijkstra, F. A., and Singh, B. 2017. Aging induced changes in biochar’s functionality and adsorption behavior for phosphate and ammonium. Environmental Science and Technology, 51(15), 8359-8367.‏
  37. Muller, R., Stummann, B. M., and Andersen, A. S. 2001. Comparison of postharvest properties of closely related miniature rose cultivars (Rosa hybrida L.). Scientia Horticulturae, 91(3-4), 325-337.‏
  38. Perner, H., Schwarz, D., Bruns, C., Mäder, P., and George, E. 2007. Effect of arbuscular mycorrhizal colonization and two levels of compost supply on nutrient uptake and flowering of pelargonium plants. Mycorrhiza, 17(5), 469-474.‏
  39. Purwanto, A.W. 2006. Sansevieria: Flora Cantik Penyerap Racun. Yogyakarta: KanisiusHartmann HT, Kes ter FT and Daviesand, R.L. 2002). Plant Propagation Principle Andpractices. Prentice Hall. P 879.
  40. Puschel, D., Rydlová, J., and Vosátka, M. 2014. Can mycorrhizal inoculation stimulate the growth and flowering of peat-grown ornamental plants under standard or reduced watering?. Applied Soil Ecology, 80, 93-99.‏
  41. Rezaee, Z., Norouzi Masir, M., and Moezzi, A. 2021. Effect of compost and biochar of bagasses on zinc uptake and growth indices of Wheat under greenhouse condition. Agricultural Engineering, 44(2), 255-274. In Persian
  42. Sairam, R. K., and Srivastava, G. C. 2001. Water stress tolerance of wheat (Triticum aestivum L.): variations in hydrogen peroxide accumulation and antioxidant activity in tolerant and susceptible genotypes. Journal of Agronomy and Crop Science, 186(1), 63-70.‏
  43. Scagel, C. F. 2001. Cultivar specific effects of mycorrhizal fungi on the rooting of miniature rose cuttings. Journal of Environmental Horticulture, 19(1), 15-20.‏
  44. Seyed-Mohammadi, N., Barmaki, M. and Davari, M. 2017. The effect of mycorrhizal fungi cultivation and symbiosis on leaf yield, percentage root colonization and some characteristics of stevia roots in soilless cultivation system. Agricultural knowledge and sustainable production.29 (2):189-204.
  45. Shahzad, A., Ahmad, N., Rather, M. A., Husain, M. K., and Anis, M. 2009. Improved shoot regeneration system through leaf derived callus and nodule culture of Sansevieria cylindrica. Biologia plantarum, 53(4), 745-749.‏
  46. Silva, M. D. A., Jifon, J. L., Da Silva, J. A., and Sharma, V. 2007. Use of physiological parameters as fast tools to screen for drought tolerance in sugarcane. Brazilian Journal of Plant Physiology, 19, 193-201.‏
  47. Varshney, A., Sharma, M. P., Adholeya, A., Dhawan, V., and Srivastava, P. S. 2002. Enhanced growth of micropropagated bulblets of Lilium sp. inoculated with arbuscular mycorrhizal fungi at different P fertility levels in an alfisol. The Journal of Horticultural Science and Biotechnology, 77(3), 258-263.‏
  48. Xiang, Y., Deng, Q., Duan, H., and Guo, Y. 2017. Effects of biochar application on root traits: a meta‐ GCB Bioenergy, 9(10), 1563-1572.‏
  49. Yeshiwas, T., Alemayehu, M., and Alemayehu, G. 2015. Effects of indole butyric acid (IBA) and stem cuttings on growth of stenting-Propagated rose in Bahir Dar, Ethiopia. World Journal of Agricultural Sciences, 11(4), 191-197.‏