نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران

2 استادیار گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران

3 استادیار گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه ایلام، ایلام، ایران

چکیده

استفاده از خاک‌ورزی حفاظتی همزمان باکاربرد روش‌های مدیریتی مناسب همچون حفظ بقایا، استفاده ازتناوب صحیح و کنترل علف‌های هرز سبب پایداری خاکدانه‌ها، جلوگیری ازتخریب ساختمان خاک و افزایش ماده‌آلی خاک می-شود. بنابراین تغییر روش خاکورزی ازسامانه‌های مرسوم به حفاظتی بویژه در چرخه‌های تناوب گیاهان، اجتناب‌ناپذیر است. پژوهش حاضر به‌منظور بررسی سامانه‌های خاک‌ورزی (چهار تیمار شخم شامل ZT-ZT: بدون شخم-بدون شخم؛ ZT-CT: بدون شخم-شخم متعارف؛ CT-CT: شخم متعارف-شخم متعارف و CT-ZT: شخم متعارف- بدون شخم) و چهارتیمار مدیریت علف‌های هرز (شامل W1: کنترل؛ W2: نیکوسولفورون پس‌رویشی+وجین‌دستی در کشت ذرت و متریبیوزین پس‌رویشی+وجین‌دستی در کشت گندم؛ W3: آترازین پیش‌کاشت+نیکوسولفورون پس‌رویشی در کشت ذرت و کلودینافوپ پس‌رویشی+بوموکسینیل+ام‌سی‌پ پس‌رویشی در کشت گندم؛ W4: بقایای گندم به‌صورت مالچ+نیکوسولفورون پس‌رویشی در کشت ذرت و بقایای ذرت به‌صورت مالچ+متریبیوزین در کشت گندم) بر برخی ویژگی‌های فیزیکی و شیمیایی عمق‌های خاک (D1: 0-15 و D2: 15-30 سانتی‌متر) در تناوب ذرت-گندم طی سال زراعی 1401-1400 در اراضی مرکز خدمات کشاورزی شاوور شهرستان شوش به‌صورت اسپلیت‌فاکتوریل در قالب طرح پایه بلوک‌های کامل تصادفی با سه‌تکرار و در مجموع 96 نمونه اجرا شد. نتایج حاکی از تاثیر معنی‌دار برهمکنش تیمارهای مورد بررسی بر تمام صفات مورد مطالعه به جز pH خاک بود. کمترین مقدار چگالی ظاهری خاک در تیمار CT-ZT×W4×D1 با میانگین 390/1 گرم بر سانتی‌متر‌ مکعب مشاهده شد، همچنین هدایت هیدرولیکی خاک در تیمار CT-CT×W3×D1 در بیشترین مقدار خود (با میانگین 994/0 سانتی‌متر در ساعت) بود. بالاترین مقدار ماده‌آلی خاک (771/0 درصد) و عناصر فسفر و پتاسیم (به‌ترتیب 96/13 و 7/234 میلی‌گرم بر کیلوگرم) نیز از تیمار ZT-ZT×W4×D1 حاصل شد.

کلیدواژه‌ها

عنوان مقاله [English]

The effects of tillage systems and weed control methods on some physical and chemical properties in corn-wheat crop rotation

نویسندگان [English]

  • Ali Monsefi 1
  • Mojtaba Norouzi Masir 2
  • Yazdan Izadi 3

1 Assistant Professor, Department of Plant Production and Genetics, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran

2 Assistant Professor, Department of Soil Science, College of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

3 Assistant Professor of Agrotechnology, Department of Plant Production and Genetics, Faculty of Agriculture, University of Ilam, Ilam, Iran.

چکیده [English]

Introduction: Despite the many benefits of tillage to crop establishment and production in the past, new herbicide and minimum-tillage management systems have drastically changed today's methods of crop production. Although tillage systems are used to increase soil porosity, they are a short-term solution that has negative consequences on surface soil structural stability, surface crop residue, and surface soil organic carbon, which are critical features that control water infiltration and subsequent water transmission and storage in soil. Physical and chemical properties of soil such as organic matter of soil is a key attribute of quality that affects water infiltration and soil aggregation. The use of conservation tillage along with the application of appropriate management methods such as conservation of residues, the use of proper rotation and weed control caused to stabilize the particles of soil, prevent the destruction of soil structure and increase soil organic matter. Therefore, changing the method of tillage systems from conventional to conservation, especially in crop rotation cycles, is inevitable. Our objectives were to summarize these findings and present additional information with particular emphasis on changes physical and chemical characteristics in different soil depths due to adoption of conservation tillage in corn-wheat crop rotation.
Materials and Methods: The present study was performed to investigate tillage systems (4 levels including ZT-ZT: Zero Tillage-Zero Tillage; ZT-CT: : Zero tillage-Conventional Tillage; CT-CT: Conventional Tillage-Conventional Tillage and CT-ZT: Conventional Tillage-Zero Tillage) and 4 levels of weed management (including W1: Control; W2: Post-emergence Nicosulfuron herbicide + hand weeded in cultivation of corn and post-emergence Metribuzin herbicide + hand weeded in cultivation of wheat; W3: Pre-emergence Atrazine + post-emergence Nicosulfuron herbicides in cultivation of corn and post-emergence Clodinafop + post-emergence Bromoxynil+MCPA herbicides in cultivation of wheat; W4: Wheat residues as a mulch + post-emergence Nicosulfuron herbicide in cultivation of corn and corn residues as a mulch + Metribuzin herbicide) on some physical and chemical properties of soil depths (D1: 0 -15 and D2: 15-30 cm) in corn-wheat rotation during the 2021-22 croping year in the farms of Shavur Agricultural Service Center of Shush city was implemented as a split-factorial in the form of a randomized complete block design with three replications and 96 samples.
Results and Discussion: The results showed that interaction of the studied treatments significant effects of the all studied traits except for soil pH. The minimum of soil bulk density was observed in conventional tillage-zero tillage × Wheat residues as a mulch + post-emergence Nicosulfuron herbicide in cultivation of corn and corn residues as a mulch + Metribuzin herbicide as weed management treatment × 0-10 cm soil depths treatment with an average of 1.390 g/cm3, also, the highest hydraulic conductivity of the soil was obtained in conventional tillage-conventional tillage × pre-emergence Atrazine + post-emergence Nicosulfuron herbicides in cultivation of corn and post-emergence Clodinafop + post-emergence Bromoxynil+MCPA herbicides in cultivation of wheat × 0-15 cm soil depths treatment (with an average of 0.994 cm/h). The highest amount of organic matter (with an average 0.771 percent) and phosphorus and potassium elements was achieved in zero tillage-zero tillage × wheat residues as a mulch + post-emergence Nicosulfuron herbicide in cultivation of corn and corn residues as a mulch + Metribuzin herbicide × 0-15 cm soil depths treatment (with averages of 13.96 and 234.7 mg/kg, respectively). Interaction effects results (tillage system × sampling depth) indicated that highest amount of total nitrogen was achieved in the zero tillage-zero tillage (ZT-ZT) on soil surface layer (0-15 cm sampling depth) with an average 122.0 kg / ha with an increase of 40.1% compared to the other treatment such as zero tillage-conventional tillage (ZT-CT), conventional tillage-conventional tillage (CT-CT) and conventional tillage-zero tillage (CT-ZT) and soil substrate (15-30 cm sampling depth, with an average of 0.87 kg/ha). In addition, the preservation of residues in the form of mulch and the use of post-emergence Nicosulfuron and Metribuzin herbicides led to maintaining the balance of soil pH in the corn-wheat rotation.
Conclusion: Steady-state soil chemical and physical properties was greater under zero tillage than under conventional tillage as a result of soil structural improvements associated with surface residue accumulation and lack of soil disturbance. In addition, our data indicate that conservation tillage along with the application of crops residues in corn-wheat crop rotation is a viable management strategy to improve soil quality in the warm, semiarid region of Khuzestan Province. This strategy could lead to high production, minimal negative environmental impacts, and a socially acceptable farming system. Therefore, the use of previous crop residues in tillage systems will have a positive effect on improving the physical and chemical properties of the soil.

کلیدواژه‌ها [English]

  • Bulk density
  • Crop rotation
  • Hydraulic conductivity
  • Soil organic matter
  • Tillage system
  1. 1.     Alberta, E. 1995. Stubble burning. Columbia basin agricultural research. Annual Report. Bogota, Colombia. 105- 109.
    1. Alletto, L., and Coquet, Y. 2009. Temporal and spatial variability of soil bulk density and near-saturated hydraulic conductivity under two contrasted tillage management systems. Geoderma, 152(1-2): 85-94.‏
    3.     Alvarez, R., and Steinbach, H. S. 2009. A review of the effects of tillage systems on some soil physical properties, water content, nitrate availability and crops yield in the Argentine Pampas. Soil and Tillage Research, 104(1): 1-15.‏
    4.     Asadi, A., Yahyaabadi, M., and Taki, O. 2011. The effect of conventional and conservation tillage on forage corn yield in a barley-corn rotation.‏ Journal of Agricultural Engineering Research, 12(1): 83-96. (In Persian with English abstract).
    5.     Azooz, R. H., Arshad, M. A., and Franzluebbers, A. J. 1996. Pore size distribution and hydraulic conductivity affected by tillage in Northwestern Canada. Soil Science Society of America Journal, 60(4): 1197-1201.‏
    6.     Bahari, L. 2010. Efficacy possibility of tank-mix application of two herbicides Nicosulfuron and Bromoxynil + MCPA – to improve the management of weeds of maize fields. Iranian Journal of Ecological Weed, 2(1): 57-69. (In Persian with English abstract).
    7.     Barzegar, A. R., Hashemi, A. M., Herbert, S. J., and Asoodar, M. A. 2004. Interactive effects of tillage system and soil water content on aggregate size distribution for seedbed preparation in Fluvisols in southwest Iran. Soil and Tillage Research, 78(1): 45-52.‏
    8.     Blevins, R. L., Thomas, G. W., Smith, M. S., Frye, W. W., & Cornelius, P. L. 1983. Changes in soil properties after 10 years continuous non-tilled and conventionally tilled corn. Soil and Tillage Research, 3(2), 135-146.‏
    9.     Bougari, E., Asoodar, M. A., Marzban, A., and Kazemi, N. 2020. Investigating water use efficiency, energy productivity, economic and yield under different wheat-maize cropping system in the north of khuzestan province. Journal of Agricultural Science and Sustainable Production, 30(4): 295-310.‏ (In Persian with English abstract).
    10. Castellini, M., and Ventrella, D. 2012. Impact of conventional and minimum tillage on soil hydraulic conductivity in typical cropping system in Southern Italy. Soil and Tillage Research, 124: 47-56.‏
    11. Chaichi, M. R., Farhoodi, R., Majnoun Hosseini, N., and Savaghebi, G, R. 2008. Effect of wheat residue management on soil properties and on sunflower yield in double cropping system. Iranian Journal of Field Crop Science. 39(1): 11-21. (In Persian with English abstract).
    12. Chegeni, M., Ansari-Dust, S. H., and Eskandari, H. 2014. Effect of tillage methods and residuals management on some physical properties of soil to achieve sustainable agriculture. Journal of Agricultural Science and Sustainable Production, 24(2): 31-40.‏ (In Persian with English abstract).
    1. Dong, W., Hu, C., Chen, S., and Zhang, Y. 2009. Tillage and residue management effects on soil carbon and CO2 emission in a wheat–corn double-cropping system. Nutrient Cycling in Agroecosystems, 83(1): 27-37.‏
    14. Doran, J. W. 1996. Soil Health and sustainability. Advances in Agronomy, 56, 1-54.
    15. Fabrizzi, K. P., Moron, A., and García, F. O. 2003. Soil carbon and nitrogen organic fractions in degraded vs. non‐degraded Mollisols in Argentina. Soil Science Society of America Journal, 67(6): 1831-1841.‏
    16. Fakheri, M., Ahmadi Nadoushan, M., and Chavoshie, E. 2020. Estimating soil organic matter in semirom area by using satellite images. Iranian Journal of Soil Research, 33(4): 511-524.‏ (In Persian with English abstract).
    1. Fallah Nosratabad, A. R., and Shariati, S. 2022. Investigating the combined application of different levels of triple superphosphate and native phosphate-solubilizing Pseudomonas bacteria on growth indices of maize. Journal of Agricultural Engineering Soil Science and Agricultural Mechanization (Scientific Journal of Agriculture), 44(4): 463-483. (In Persian with English abstract).
    18. Fan, R., Zhang, X., Yang, X., Liang, A., Jia, S., and Chen, X. 2013. Effects of tillage management on infiltration and preferential flow in a black soil, Northeast China. Chinese Geographical Science, 23(3): 312-320.‏
    1. FAO (Food and Agriculture Organization of the United Na­tions). 2019. The state of world plant production. Available from: http://www.fao.org/statistics/en. Ac­cessed Jan 23, 2019.
    20. Farhoudi, R., and Hamze, M. 2018. Effect of tank mixing herbicides on Mung Bean (Vigna radiate) grain yield and weed control at North Khuzestan climatic condition. Iranian Journal Pulses Research, 9(2): 151-165.‏ (In Persian with English abstract).
    1. Habtegebrial, K., Singh, B. R., and Haile, M. 2007. Impact of tillage and nitrogen fertilization on yield, nitrogen use efficiency of tef (Eragrostis tef (Zucc.) Trotter) and soil properties. Soil and Tillage Research, 94(1): 55-63.‏
    22. Hernanz, J. L., López, R., Navarrete, L., and Sanchez-Giron, V. 2002. Long-term effects of tillage systems and rotations on soil structural stability and organic carbon stratification in semiarid central Spain. Soil and Tillage Research, 66(2): 129-141.‏
    23. Hooshmandi, H., Mirzavand, J., and Zare, M. 2021. Effect of tillage practices and nitrogen rates on nitrogen use efficiency and nitrogen nutrition index of wheat in a calcareous soil (case study: Zarghan Region, Fars Province). Journal of Agricultural Science and Sustainable Production, 31(1): 239-257.‏ (In Persian with English abstract).
    24. Hosseini-kia, S. H., Momeni Damane, J., Hadizadeh, M. H., Bazoobandi, M., Hajmohammadnia Ghalibaf, K. 2019. Efficacy of some sulfonylurea herbicides for weed control of wheat (Triticum aestivum L.) in Sarakhs province. Journal of Plant Ecophysiology, 10(35): 10-18.‏ (In Persian with English abstract).
    1. Hoyle, F. C., and Murphy, D. V. 2011. Influence of organic residues and soil incorporation on temporal measures of microbial biomass and plant available nitrogen. Plant and Soil, 347(1): 53-64.‏
    26. Jabro, J. D., Stevens, W. B., Evans, R. G., and Iversen, W. M. 2009. Tillage effects on physical properties in two soils of the Northern Great Plains. Applied Engineering in Agriculture, 25: 377-382.
    27. Jackson, M. L. 1967. “Soil chemical analysis” Prentice Hall of India Pvt. Ltd., New Delhi, pp. 498.
    28. Kargar, M., Ghorbani, R., Rashed Mohassel, M. H., and Rastgoo, M. 2016. Feasibility sulfonylurea herbicide mixture with auxin-type for broadleaved weeds control in wheat (Triticum aestivum). Applied Field Crops Research, 29(3): 37-49.‏ (In Persian with English abstract).
    29. Lal, R. 2009. Soil quality impacts of residue removal for bioethanol production. Soil and Tillage Research, 102(2): 233-241.‏
    30. Licht, M. A., and Al-Kaisi, M. 2005. Strip-tillage effect on seedbed soil temperature and other soil physical properties. Soil and Tillage Research, 80(1-2): 233-249.‏
    31. Loghmani, A., Asudar, M. A., Nooriani, H., and Abravesh, A. 2009. Investigation of the effect of tillage systems and weed control on wheat yield in Dezful region. Crop Physiology Journal, 1(4): 99-109. (In Persian with English abstract).
    1. Mir, S. A. 2008. A rapid technique for determination of nitrate and nitric acid by acid reduction and diazotization at elevated temperature. Analytica Chimica Acta, 620(1-2): 183-189.‏
    33. Mirzavand, J., Moosavi, S. A. A, Sameni, A. M., Afzalinia, S., Karimian, N. A. 2016. Effects of soil tillage systems and plant residue management on unsaturated hydraulic conductivity of soil in wheat-corn rotation. Journal of Water and Soil Conservation, 23(3): 131-150.‏ (In Persian with English abstract).
    34. Misra, R. D., and Ahmed, M. 1987. Manual on irrigation agronomy. Oxford and IBH Publication Co. Pvt. Ltd., New Delhi, India.
    35. Monsefi, A., and Behera, U. K. 2014. Effect of tillage and weed-management options on productivity, energy-use efficiency and economics of soybean (Glycine max). Indian Journal of Agronomy, 59(3): 481-484.
    1. Monsefi, A., Sharma, A. R., and Rang Zan, N. 2016. Tillage, crop establishment, and weed management for improving productivity, nutrient uptake, and soil physico-chemical properties in soybean-wheat cropping system. Journal of Agricultural Science and Technology, 18(2): 411-421.‏
    37. Mulumba, L. N., and Lal, R. 2008. Mulching effects on selected soil physical properties. Soil and Tillage Research, 98(1): 106-111.‏
    38. Nemes, A., Rawls, W. J., and Pachepsky, Y. A. 2005. Influence of organic matter on the estimation of saturated hydraulic conductivity. Soil Science Society of America Journal, 69(4): 1330-1337.‏
    39. Neugschwandtner, R. W., Liebhard, P., Kaul, H. P., and Wagentristl, H. 2014. Soil chemical properties as affected by tillage and crop rotation in a long-term field experiment. Plant, Soil and Environment, 60(2): 57-62.‏
    1. Noraftab, R., Monsefi, A., Rahnama Ghahfarokhi, A., and Ayneband, A. 2021. Effect of conservation tillage and integrated weed management on yield, energy consumption and profitability of wheat in Khuzestan. Journal of Agricultural Science and Sustainable Production, 31(2): 57-73.‏ (In Persian with English abstract).
    41. Olsen, S. R., Cole, C.V., Watanabe, F. S. and Dean, L. A. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. US Dept. Agric. Circ. 939, Washington, DC.
    42. Piper, C.S. 1950. Soil and Plant Analysis. Inter Science Publisher, Inc. New York. pp. 368.
    43. Prasad, R., Shivay, Y. S., Kumar, D., and Sharma, S. N. 2006. Learning by doing exercises in soil fertility (A practical manual for soil fertility). Division of Agronomy, IARI, New Delhi, 68 Pp.‏
    44. Reynolds, W. D., Gregorich, E. G., and Curnoe, W. E. 1995. Characterisation of water transmission properties in tilled and untilled soils using tension infiltrometers. Soil and Tillage Research, 33(2): 117-131.‏
    45. Santana, D. G. D., Carvalho, F. J., Toorop, P. 2018. How to analyze germination of species with empty seeds using contemporary statistical methods? Acta Botanica Brasilica, 32: 271-278.
    1. Sayfzadeh, S., Norouzi, J., Eradatmand Asli, D., Zakerin, H. R., Hadidi Masouleh, I., and Yousefi, M. 2022. Effect of nitrogen fertilizer splitting on eco-physiological traits of two Maize cultivars under normal irrigation and stress. Journal of Agricultural Science and Sustainable Production, 32(1): 115-132.‏ (In Persian with English abstract).
    2. Sodaeizadeh, H., Advin, S., Hakimi, M. H., Hakimzadeh, M. A., and Hooshmandzadeh, F. 2019. The effect of crop rotation on some soil properties in dry lands (case study Roknabad Maybod). Journal of Environmental Science Studies, 4(4): 2056-2062.‏ (In Persian with English abstract).
    48. Soltani, A., 2007. Application of SAS in statistical analysis. Jehad-e-Daneshgahi Mashhad Press (2nd ed.) 182p. (In Persian with English abstract).
    49. Telischi, F., Lorzade, S., and Pourazar, R. 2015. The possibility of tank-mixed application of herbicide Bromicide with new Sulfonylurea herbicides. 6th Iranian Weed Science Conference, Sep. 1-3, Birjand, Iran, 1080-1085 Pp. (In Persian with English abstract).
    50. Vian, J. F., Peigné, J., Chaussod, R., and Roger‐Estrade, J. 2009. Effects of four tillage systems on soil structure and soil microbial biomass in organic farming. Soil Use and Management, 25(1): 1-10.‏
    51. Walkley, A., and Black, I. A. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1): 29-38.‏
    1. Zare Feizabadi, A., and Nouri Hoseini, M. 2013. Study on the variations of organic carbon and some nutrients in soil in wheat based rotations. Iranian Journal of Soil Research, 27(4): 629-643. (In Persian).