نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی‌ارشد علوم خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

2 استادیار گروه علوم خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، ایران

3 دانشیار گروه علوم خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

4 استادیار مرکز تحقیقات کشاورزی و منابع طبیعی، گرگان، ایران

5 دکتری زراعت، سازمان جهاد کشاورزی گرگان، ایران

چکیده

این پژوهش با هدف ارزیابی تاثیر کاربرد جداگانه و تلفیقی کود شیمیایی با کودهای آلی و زیستی بر رشد و عملکرد کلزای نشایی، در قالب طرح بلوک کاملاً تصادفی با شش تیمار، سه تکرار و در مجموع 18 واحد آزمایشی در سال زراعی 99-1398 در ایستگاه عراقی محله شهر گرگان انجام شد. تیمارها شامل: 1) شاهد (بدون کود، T1)، 2) کود شیمیایی (T2)، 3) کود پلت مرغی (T3)، 4) کود کمپوست (T4)، 5) کود شیمیایی 50%+کود مرغی 50%+ کود کمپوست 50% (T5) و 6) کود شیمیایی 50%+کود مرغی 50%+ کود کمپوست 50%+ کود زیستی بایوفارم1 (T6) بود. نتایج نشان داد، اثر تیمارهای کودی بر عملکرد و اجزای عملکرد معنی‏دار بود (01/0>p). بیشترین وزن هزار دانه، عملکرد دانه، پروتئین دانه، تعداد دانه در غلاف، طول غلاف و تعداد غلاف در بوته در تیمار کود شیمیایی 50%+کود مرغی 50%+ کود کمپوست 50%+ کود زیستی (T6) مشاهده شد که نسبت به تیمار شاهد (با کمترین مقادیر) به‏ترتیب افزایش 9/21، 7/43، 8/33، 2/29، 2/37 و 6/37 درصدی داشت (05/0>p). تیمارهای کود شیمیایی (T2) و مصرف تلفیقی کود شیمیایی با کودهای آلی و زیستی (T6) با بیشترین شاخص کلروفیل (85/67 و 83/65) نسبت به شاهد (T1) به‏ترتیب افزایش 6/35 و 7/33 درصدی داشتند. تیمار مصرف جداگانه کودهای آلی (T3 و T4) بدون تفاوت معنی‏دار بیشترین درصد روغن را (با میانگین 73/45 درصد) تولید کردند که نسبت به تیمارهای کود شیمیایی (T2) و شاهد (T1) با کمترین مقدار (با میانگین 7/42 درصد) افزایش 6/6 درصدی نشان دادند.

کلیدواژه‌ها

عنوان مقاله [English]

Evaluation of the integrated effect of chemical and bio-organic fertilizers on yield and yield components of rapeseed

نویسندگان [English]

  • gholamreza Adim 1
  • Elham Malekzadeh 2
  • Esmael Dordipour 3
  • Farshad Kiani 3
  • Hassan Mokhtarpour 4
  • seraj Moazzemi 5

1 M.Sc. Graduate of Soil Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

2 Assistant Professor, Department of Soil Science, Gorgan university of Agricultural Science and Natural Resources, Iran

3 Associate Professor, Department of Soil Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

4 Assistant Professor, Department of Crop and Horticultural Research, Golestan Agricultural and Natural Resources Reseach Center, Education and Extension Organization (AREEO), Gorgan, Iran

5 Ph.D of Agronomy, Agricultural Jihad Organization of Golestan Province, Gorgan, Iran.

چکیده [English]

Introduction In recent years, ensuring the continuous and sustainable production of healthy food products along with environmental protection and paying attention to agricultural economic and environmental problems is very important. Although the use of chemical fertilizers has a high yield of plants, its destructive effects in the long-term are known on the soil biological, physical and chemical properties and environmental pollution. Therefore, a strategy must be considered that can improve soil health and quality as well as produce a high plant yield. Organic manures increase the growth, yield and quality of plants by improving soil conditions and the balance of essential elements. An integrated plant nutrition management system by reducing the use of chemical fertilizers is known as one of the ways to achieve the expected yield and meanwhile, minimize the adverse environmental effects of chemical fertilizers in the world.
Materials and Methods The objective of this study was to evaluate the effect of single and combined use of chemical fertilizer (urea, triple superphosphate, potassium sulfate as NPK) with organic and biological fertilizers on the yield and yield components of transplanted canola (Brassica napus L.). Experiment was conducted in a randomized complete block design with six treatments and three replications (18 experimental units) in the 2019-2020 crop year at the Iraqi Agricultural Research Station in Gorgan, Iran. Treatments included: 1) Control (without fertilizer, T1), 2) Chemical fertilizer (T2), 3) Poultry manure (T3), 4) Compost (T4), 5) 50% Chemical fertilizer+ 50% Poultry manure+ 50% Compost (T5), 6) 50% Chemical fertilizer+ 50% Poultry manure+ 50% Compost+ Biofarm-1 biofertilizer (T6). Chemical fertilizer was applied based on soil test including nitrogen equivalent to 250 kg/ha urea was added in three stages during planting, stem elongation, before flowering; phosphorus equivalent to 150 kg/ha of triple super phosphate; potassium equivalent to 50 kg/ha of potassium sulfate, respectively. Organic fertilizers were calculated based on their total nitrogen contents and the equivalent of pure nitrogen recommended based on the soil test for chemical fertilizer and by assuming 50% mineralization rate of organic fertilizers in the soil. Biofertilizer was applied as seed inoculation plus spraying on the plant base in two stages of 4 to 8 leaves and stem elongation. Chlorophyll index was measured in the middle of the flowering stage by using SPAD. After physiological maturity, yield and yield components including pods per plant, numbers of seeds per pod, pod length, 1000-seed weight, seed yield, protein and oil contents of grain were recorded.
Results and Discussion The results showed that the effect of fertilizer treatments was significant on yield and yield components (p <0.01). The highest 1000-seed weight, grain yield, protein content of the seed, number of seeds per pod, pod length and pods per plant were recorded in the treatment of 50% chemical fertilizer+ 50% Poultry manure+ 50% Compost+ Biofertilizer (T6) which increased by 21.9%, 43.7%, 33.8%, 29.2%, 37.2% and 37.6%, respectively, in compared to the control treatment (with the lowest values). The pods per plant, 1000-seed weight and grain yield were not significantly different between the combined treatments of chemical fertilizer+bio-organic fertilizers (T6) and integrated use of chemical and organic (T5) fertilizers (p <0.05). The control treatment (T1) by 2248.37 Kg/ha of grain yield (the minimum amount) decreased by 43.7% and 38.3% compared to T6 and T5 treatments, respectively. The chemical treatment (T2) and integrated application of chemical fertilizer+ bio-organic fertilizers (T6) showed the most positive effect on the chlorophyll index compared to other fertilizer and control treatments (with the lowest index, 43.66). Chlorophyll index in the T2 and T6 treatments increased by 35.6% and 33.7% compared to the control treatment (T1), respectively. The treated plants by alone use of organic fertilizers (T3 and T4) without notable difference produced the highest grain oil (by an average of 45.73%) which increased by 6.6% compared to the chemical fertilizer (T2) and control (T1) treatments by an average of 42.7%.
Conclusion Combined use of chemical fertilizer with bio-organic fertilizers had the most positive effect on yield and yield components, and often showed significant difference with the single application of chemical and organic fertilizer treatments (T2, T3 and T4). Therefore, the combination use of chemical and bio-organic fertilizers is a better option to increase the yield and yield components of transplanted canola than the single use of chemical fertilizers. The highest pods per plant, pod length, number of seeds per pod, chlorophyll index, protein content, chlorophyll, 1000-seed weight, and grain yield were related to the integrated application of chemical fertilizer with bio-organic fertilizers (T6 and T5), so it can be inferred that the use of a mixture of organic, biological and chemical fertilizers is an effective approach to reduce the using of chemical fertilizers and their destructive environmental effects, as well as increase the yield of transplanted rapeseed

کلیدواژه‌ها [English]

  • Transplanted rapeseed
  • Compost
  • Integrated fertilization
  • Biofertilizer
  • Poultry manure
  1. Alami-Milani, M., Amini, R., and Bandehagh, A. 2015. Effect of bio-fertilizers and combination with chemical fertilizers on grain yield and yield components of pinto bean (Phaseolus vulgaris). Journal of Agriculture Science and Suatainable Production, 24: 15–29.
  2. Ali, M.E., Fathi, A.I., Mohamed, O.H., and El-Edfawy, Y.M. 2011. Response of canola productivity and quality to bio-organic and inorganic N-fertilizers. Journal of Soil Sciences and Agricultural Engineering Mansoura University, 2(12): 1255-1272.
  3. Al-Suhaibani, N., Selim, M., Alderfasi, A., and El-Hendawy, S. 2021. Integrated application of composted agricultural wastes, chemical fertilizers and biofertilizers as an avenue to promote growth, yield and quality of maize in an arid agro-ecosystem. Sustainability, 13: 7439. https://doi.org/10.3390/su13137439.
  4. Amujoyegbe, B.J., Opabode, J.T., and Olayinka, A. 2007. Effect of organic and inorganic fertilizer on yield and chlorophyll content of maize (Zea mays) and sorghum (Sorghum bicolour (L.) Moench). African Journal of Biotechnology, 6(16). https://doi.org/10.5897/AJB2007.000-2278
  5. Ansari, R.A., and Mahmood, I. 2017. Optimization of organic and bio-organic fertilizers on soil properties and growth of pigeon pea. Scientia Horticulturae, 226: 1–9.
  6. Awad, N.M., Turky, A.S., and Mazhar, A.A. 2005. Effects of bio-and chemical nitrogenous fertilizers on yield of anise (Pimpinella anisum) and biological activities of soil irrigated with agricultural drainage water. Egyptian Journal of Soil Science, 45(3): 265–278.
  7. Bell, M.J., Harch, G., and Wright, G.C. 1991. Plant population studies on peanut (Arachis hypogaea) in subtropical Australia. 1. Growth under fully irrigated conditions. Australian Journal of Experimental Agriculture, 31(4): 535–543.
  8. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2): 248–254.
  9. Bremner, J.M., and Mulvaney, C.S. 1982. Nitrogen-Total. In Page, A.L., Miller, R.H., and Keeney, D.R. (eds.), Methods of soil analysis Part 2: Chemical and microbiological properties. American Society of Agronomy, Soil Science Society of America, Madison, Wisconsin. pp: 595-624.
  10. Chew, K.W., Chia, S.R., Yen, H.W., Nomanbhay, S., Ho, Y.C., and Show, P.L. 2019. Transformation of biomass waste into sustainable organic fertilizers. Sustainability, 11(8): 2266.
  11. Darzi, M.T., Seyedhadi, M.H., and Rejali, F. 2012. Effects of the application of vermicompost and phosphate solubilizing bacterium on the morphological traits and seed yield of anise (Pimpinella anisum). Journal of Medicinal Plants Research, 6(2): 215–219.
  12. Downey, R.K., and Bell, J.M. 1990. New developments in canola research. In Canola and Rapeseed. Springer. pp: 37–46.
  13. Eche, N.M., Iwuafor, E.N., Amapui, I.Y., and Burns, M.V. 2013. Effects of application of organic and chemical amendments in a continuous cropping system for 10 years on chemical and physical properties of an Alfisol in Northern Guinea Savanna Zone. International Journal of Agricultural Policy and Research, 1: 116–27.
  14. El Sabagh, A., Omar, A.E., Saneoka, H., and Barutçular, C. 2015. Evaluation agronomic traits of canola (Brassica napus) under organic, bio-and chemical fertilizers. Dicle University Journal of the Institute of Natural and Applied, 4(2): 59–67.
  15. El Sayed, S., Hellal, F., and Abdel-Kader, H.H. 2021. Growth and yield production of canola as affected by organic and mineral fertilizers application under drought stress conditions. Annual Research and Review in Biology, 36(1): 1-13. https://doi.org/10.9734/arrb/2021/v36i130328.
  16. Faria, W.M., Figureueiredo, C.C.de., Coser, T.R., Vale, A.T., and Schneider, B.G. 2018. Is sewage sludge biochar capable of replacing inorganic fertilizers for corn production? Evidence from a two-year field experiment. Archives of Agronomy and Soil Science, 64(4): 505–519.
  17. Feizabadi, A., Noormohammadi, G., and Fatehi, F. 2021. Changes in growth, physiology, and fatty acid profile of rapeseed cultivars treated with vermicompost under drought stress. Journal of Soil Science and Plant Nutrition, 21(1): 200–208.
  18. Fridrihsone, A., Romagnoli, F., and Cabulis, U. 2020. Environmental life cycle assessment of rapeseed and rapeseed oil produced in Northern Europe: A Latvian case study. Sustainability, 12(14): 5699. https://doi.org/10.3390/su12145699.
  19. Gee, G.W., and Bauder, J.W. 1986. Particle size analysis. In Klute, A. (ed.), Method of Soil Analysis. part 1. 2th Ed: Physical and mineralogical methods. Soil Science Society of America, Madison, Wisconsin, USA. pp: 383-411.
  20. Habteweld, A., Brainard, D., Kravchencko, A., Grewal, P.S., and Melakeberhan, H. 2020. Effects of integrated application of plant-based compost and urea on soil food web, soil properties, and yield and quality of a processing carrot cultivar. Journal of Nematology., 52: e2020-111. doi: 10.21307/jofnem-2020-111
  21. Hashemzadeh, F., Mirshekari, B., Khoei, F. R., Yarnia, M., and Tarinejad, A. 2013. Effect of bio and chemical fertilizers on seed yield and its components of dill (Anethum graveolens). Journal of Medicinal Plants Research, 7(3): 111–117.
  22. Hassan, F.A.S., Ali, E.F., and Mahfouz, S.A. 2012. Comparison between different fertilization sources, irrigation frequency and their combinations on the growth and yield of coriander plant. Australian Journal of Basic and Applied Sciences, 6(3): 600–615.
  23. Jackson, M.L. 1967. Soil Chemical Analysis. Prentice Hall of India Private Limited, New Delhi. 205p.
  24. Kachel-Jakubowska, M., Sujak, A., and Krajewska, M. 2018. Effect of fertilizer and storage period on oxidative stability and color of rapeseed oils. Polish Journal of Environmental Studies, 27(2): 699–708.
  25. Khadem, S.A., Galavi, M., Ramrodi, M., Mousavi, S.R., Rousta, M.J., and Rezvani-Moghadam, P. 2010. Effect of animal manure and superabsorbent polymer on corn leaf relative water content, cell membrane stability and leaf chlorophyll content under dry condition. Australian Journal of Crop Science, 4(8): 642–647.
  26. Khan, Z., Zhang, K., Khan, M.N., Fahad, S., Xu, Z., and Hu, L. 2020. Coupling of biochar with nitrogen supplements improve soil fertility, nitrogen utilization efficiency and rapeseed growth. Agronomy, 10(11): 1661. https://doi.org/10.3390/agronomy10111661.
  27. Knudsen, D., Peterson, G.A., and Pratt, P.F. 1982. Lithium, Sodium and potassium. In Page, A.L. et al (eds.), Methods of soil analysis Part 2. American society of agronomy, Madison. WI. pp: 225-246
  28. Konuskan, D.B., Arslan, M., and Oksuz, A. 2019. Physicochemical properties of cold pressed sunflower, peanut, rapeseed, mustard and olive oils grown in the Eastern Mediterranean region. Saudi Journal of Biological Sciences, 26(2): 340–344.
  29. Laleh, S., Jami Al-Ahmadi, M., Parsa, S. 2021. Response of hemp (Cannabis sativa) to integrated application of chemical and manure fertilizers. Acta Agriculturae Slovenica, 117(2): 1-15.
  30. Li, S., Zhao, X., Ye, X., Zhang, L., Shi, L., Xu, F., and Ding, G. 2020. The effects of condensed molasses soluble on the growth and development of rapeseed through seed germination, hydroponics and field trials. Agriculture, 10(7): 260. https://doi.org/10.3390/agriculture10070260
  31. Lindsay, W.L., and Norvell, W.A. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil science society of America journal, 42(3): 421-428.
  32. Liu, X., Yang, Y., Deng, X., Li, M., Zhang, W., and Zhao, Z. 2017. Effects of sulfur and sulfate on selenium uptake and quality of seeds in rapeseed (Brassica napus) treated with selenite and selenate. Environmental and Experimental Botany, 135: 13–20.
  33. Loeppert, R.H., and Suarez, G.L. 1996. Carbonates and gypsum. In Sparks, D.L. (ed.), Methods of Soil Analysis Part 3. 2th Ed: Chemical methods. Madison Wisconsin, USA. pp: 437-474.
  34. Majumder, S., Halder, T.K., and Saha, D. 2017. Integrated nutrient management of rapeseed (Brassica campestris var. Yellow sarson) grown in a typic haplaquept soil. Journal of Applied and Natural Science., 9(2): 1151-1156 .
  35. Mamnabi, S., Nasrollahzadeh, S., Ghassemi-Golezani, K., and Raei, Y. 2020. Improving yield-related physiological characteristics of spring rapeseed by integrated fertilizer management under water deficit conditions. Saudi Journal of Biological Sciences, 27(3): 797–804.
  36. Massoud, H.A.Y., Dawa, K.K., El-Gamal, S., and A Karkash, S.H. 2019. Response of (Petroselinum sativum) to organic, bio-fertilizer and some foliar application. Journal of Plant Production, 10(12): 1149–1161.
  37. McKevith, B. 2005. Nutritional aspects of oilseeds. Nutrition Bulletin, 30(1): 13–26.
  38. Naderi, R., Bijanzadeh, E., and Egan, T.P. 2020. The effect of organic and chemical fertilizers on oilseed rape productivity and weed competition in short rotation. Journal of Plant Nutrition, 43(16): 2403–2410.
  39. Naveed, M., Sajid, H., Mustafa, A., Niamat, B., Ahmad, Z., Yaseen, M., Kamran, M., Rafique, M., Ahmar, S., and Chen, J.T. 2020. Alleviation of salinity-induced oxidative stress, improvement in growth, physiology and mineral nutrition of canola (Brassica napus) through calcium-fortified composted animal manure. Sustainability, 12(3): 846. https://doi.org/10.3390/su12030846
  40. Nelson, D.W., and Sommers, L.E. 1996. Total carbon, organic carbon, and organic matter. In Page, A.L. et al (eds.), Methods of Soil Analysis Part 2: Chemical and microbiological properties 2nd Edition. Agronomy Series No. 9, ASA SSSA, Madison. pp: 961-1010.
  41. Odunze, A.C., Jinshui, W., Shoulong, L., Hanhua, Z., Tida, G., Yi, W., and Qiao, L. 2012. Soil quality changes and quality status: a case study of the subtropical China Region Ultisol. British Journal of Environment and Climate Change, 2: 37–57.
  42. Olsen, S.R., Cole, C.V., Watanabe, F.S., and Dean, L.A. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Circular, Washington, DC: US Department of Agriculture, 939: 19.
  43. Pedraza, R.O., Bellone, C.H., de Bellone, S.C., Sorte, P.M.F.B., and dos Santos Teixeira, K.R. 2009. Azospirillum inoculation and nitrogen fertilization effect on grain yield and on the diversity of endophytic bacteria in the phyllosphere of rice rainfed crop. European Journal of Soil Biology, 45(1): 36–43.
  44. Poblete-Grant, P.V. 2019. Impact of poultry manure application, alone or combined with phosphate rock on biogeochemical cycling of C and P in grassland soils. Ecology, environment. Sorbonne Université; Universidad de la Frontera, Temuco, Chili.
  45. Rahimi, A., Siavash Moghaddam, S., Ghiyasi, M., Heydarzadeh, S., Ghazizadeh, K., and Popović-Djordjević, J. 2019. The Influence of chemical, organic and biological fertilizers on agrobiological and antioxidant properties of Syrian cephalaria (Cephalaria Syriaca). Agriculture, 9(6): 122 . https://doi.org/10.3390/agriculture9060122
  46. Rajasekaran, S., Sundaramoorthy, P., and Sankar Ganesh, K. 2015. Effect of FYM, N, P fertilizers and biofertilizers on germination and growth of paddy (Oryza sativa). International Letters of Natural Sciences, 8: 59–65.
  47. Rameeh, V. 2012. Ions uptake, yield and yield attributes of rapeseed exposed to salinity stress. Journal of Soil Science and Plant Nutrition, 12(4): 851–861.
  48. Rathke, G.W., Christen, O., and Diepenbrock, W. 2005. Effect of nitrogen source and rate on productivity and quality of winter oilseed rape (Brassica napus) grown in different crop rotations. Field Crops Research, 94: 103 -113.
  49. Salehi, A., Tasdighi, H., and Gholamhoseini, M. 2016. Evaluation of proline, chlorophyll, soluble sugar content and uptake of nutrients in the German chamomile (Matricaria chamomilla) under drought stress and organic fertilizer treatments. Asian Pacific Journal of Tropical Biomedicine, 6(10): 886–891.
  50. Scheffer, M.C., Ronzelli Junior, P., and Koehler, H.S. 1992. Influence of organic fertilization on the biomass, yield and composition of the essential oil of Achillea millefolium Acta Horticulturae, 331; 109-114.
  51. Selvakumari, I.A., Jayamuthunagai, J., Senthilkumar, K., and Bharathiraja, B. 2020. Biofuels Production from Diverse Bioresources: Global Scenario and Future Challenges. In Biofuels Production–Sustainability and Advances in Microbial Bioresources, Springer. pp: 163–184.
  52. Siavoshi, M., Nasiri, A., and Laware, S.L. 2011. Effect of organic fertilizer on growth and yield components in rice (Oryza sativa). Journal of Agricultural Science, 3(3): 217-224.
  53. Sun, R., Zhang, X. X., Guo, X., Wang, D., and Chu, H. 2015. Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw. Soil Biology and Biochemistry, 88: 9–18.
  54. Taylor, A.J., Smith, C.J., and Wilson, I.B. 1991. Effect of irrigation and nitrogen fertilizer on yield, oil content, nitrogen accumulation and water use of canola (Brassica napus). Fertilizer Research, 29: 249 – 260.
  55. Woźniak, E., Waszkowska, E., Zimny, T., Sowa, S., and Twardowski, T. 2019. The rapeseed potential in Poland and Germany in the context of production, legislation, and intellectual property rights. Frontiers in Plant Science, 10: 1423. https://doi.org/10.3389/fpls.2019.01423
  56. Wu, L., Jiang, Y., Zhao, F., He, X., Liu, H., and Yu, K. 2020. Increased organic fertilizer application and reduced chemical fertilizer application affect the soil properties and bacterial communities of grape rhizosphere soil. Scientific Reports, 10(1): 1–10.
  57. Xu, H.L. 2001. Effects of a microbial inoculant and organic fertilizers on the growth, photosynthesis and yield of sweet corn. Journal of Crop Production, 3(1): 183–214.
  58. Yasari, E., Azadgoleh, M.A., Mozafari, S., and Alashti, M.R. 2009. Enhancement of growth and nutrient uptake of rapeseed (Brassica napus) by applying mineral nutrients and biofertilizers. Pakistan Journal of Biological Sciences: PJBS, 12(2): 127–133.
  59. Zohry, A.A., and Mohamadian, A.A. 2020. Chemical versus nonchemical fertilizer sources to enhance the yield of three edible oil crops in east El-OWINATE region in Egypt. Journal of Soils and Crops, 30 (2): 191-199.