نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم خاک، دانشکده علوم کشاورزی، دانشگاه گیلان

2 گروه علوم خاک دانشکده کشاورزی، دانشگاه گیلان

3 بخش آبخیزداری، اداره کل منابع طبیعی و آبخیزداری استان گیلان

چکیده

تخریب محیط‌زیستی ناشی از استفاده نامناسب اراضی از جمله مشکلات جهانی است. به منظور ارزیابی اثر کاربری اراضی بر تخریب کیفیت خاک، شاخص حساسیت، نسبت لایه‌بندی و شاخص کیفیت خاک بر اساس مجموعه داده حداقل و توسط روش‌های نمره‌دهی خطی و غیرخطی تعیین شد. نتایج نشان داد که اثرکاربری اراضی تنها بر عامل فرسایش‌پذیری خاک به روش استواری معنی‌دار بود و کاربری جنگل در مقایسه با کاربری مرتع و زراعی دارای کم‌‌ترین میزان عامل فرسایش‌پذیری خاک بود. شاخص حساسیت ویژگی‌های خاک نشان داد که کلسیم کربنات معادل، ماده آلی، میانگین وزنی قطر خاکدانه و شاخص پایداری ساختمان خاک نسبت به سایر ویژگی‌ها به تغییر کاربری حساس‌تر بودند. نسبت لایه‌بندی ماده آلی و شاخص پایداری ساختمان خاک نیز نشان داد که این ویژگی‌ها به خوبی می‌توانند تخریب کیفیت خاک در اثر تغییر کاربری را نشان دهند. جرم مخصوص ظاهری خاک، ماده آلی، میانگین وزنی قطر خاکدانه و عامل فرسایش‌پذیری خاک به روش استواری به عنوان مجموعه داده حداقل انتخاب شدند. ارزیابی کیفیت خاک نشان داد که در رابطه با اثر کاربری اراضی بر شاخص کیفیت خاک، روش نمره‌دهی غیرخطی بر نمره‌دهی خطی برتری دارد، به نحوی که کاربری جنگل و زراعی به ترتیب از بیش‌ترین و کم‌ترین شاخص کیفیت خاک به روش نمره‌دهی غیرخطی برخوردار بودند و با افزایش عمق، شاخص کیفیت خاک کاهش یافت. با توجه به حساسیت زیاد کیفیت خاک به تغییر کاربری اراضی پیشنهاد می‌شود به منظور پایداری زیست‌بوم از جنگل‌تراشی و تغییر کاربری اراضی در منطقه مورد مطالعه جلوگیری شود.

کلیدواژه‌ها

عنوان مقاله [English]

Impact of land use change on erodibility and soil quality indicators (case study: Sidasht, Guilan Province)

نویسندگان [English]

  • Fatemeh Samie 1
  • Nafiseh Yaghmaeian Mahabadi 2
  • Sepideh Abrishamkesh 1
  • Ataolah Maslahatjou 3

1 Department of Soil Science, Faculty of Agricultural Sciences, University of Guilan, Iran

2 Department of Soil Science, Faculty of Agricultural Sciences, University of Guilan

3 General Office of Natural Resources and Watershed Management of Guilan province, Rasht, Iran.

چکیده [English]

Introduction Soil is one of the important parts of ecosystem. Land use change and developed agriculture can lead to soil loss and land degradation because they have damaging effects on soil properties including soil organic carbon, aggregate stability and soil erodibility factor. Soil erodibility factor can be measured by different methods including experimental plots. It shows that the problem should be dealt directly and it demands high amount of cost and time. The factor can be calculated by soil properties such as soil organic matter and particle size distribution. They play a crucial role for sustainable ecosystem and decreased soil erosion. Since a few decades ago, deforestation has caused increased soil degradation and it has had devastative effects on soil surface and subsurface properties. This study investigated soil erodibility factor by different methods in three land uses including forest, grassland, and cropland at two depths in Sidasht of Guilan province. Soil quality index was calculated for evaluation of effects of land use on soil quality degradation.
Materials and Methods The study area is located in Tootkabon in Guilan province (latitude 36º 50' 10" N, longitude 49º 39' 15" E). Parent material is limestone and geomorphologic units that are comprised of hill land and plateau. The soil moisture and temperature regimes are xeric and thermic, respectively. In order to reach the goals of the study, samples were collected from three land uses of forest, grassland, and cropland at two depths of 0 to 10 and 10 to 20 cm in regards to parent material, slope class, and equal slope aspect. Soil samples were prepared in two categories: the disturbed soil and the undisturbed ones. After becoming air drying, the disturbed samples were sieved by a 2 mm sieve. Soil properties such as soil texture, bulk density, soil organic carbon, CaCO3, and soil stability were measured. Soil erodibility factor is calculated by nomograph, Vaezi and Ostovari methods. Also sensitivity index and stratification ratio were taken into account. Soil quality index was determined using linear and nonlinear scoring methods based on minimum data set. All soil parameters were tested using one-way analysis of variance and the differences among means were analyzed using Duncan's significant difference test at the probability level of 0.05.
Results and Discussion Results showed that the effects of land use and soil depth on bulk density, soil texture and soil erodibility factor using nomograph method were non-significant (p ≤ 0.05). The amount of organic matter, soil structure stability index and soil erodibility factor of Vaezi method were significantly decreased by increasing the depth. MWD and GMD at forest were higher than cropland, and CaCO3 and soil erodibility factor of Ostovari method at forest were lower than cropland. In comparison with other methods, soil erodibility factor of Ostovari method demonstrated that the effect of land use was significant (p ≤ 0.05). Soil properties including bulk density, MWD, organic matter, and soil erodibility factor of Ostovari method were selected as the minimum data set. Results of nonlinear scoring method were better than linear scoring method because the linear scoring method just showed the effects of soil depth on soil quality index (p ≤ 0.05). The soil quality index using linear scoring method was decreased by increasing the depth. However, soil quality index using nonlinear scoring method in forest was higher than cropland, and it was decreased by increasing the soil depth. It was found that non linear scoring methods are superior to linear and soil quality index using the nonlinear scoring method showed better the soil quality among different land uses.

Conclusion Sensitivity index and stratification ratio values showed that land use change and soil depth effect on soil properties including CaCO3, organic matter, structure stability index and MWD. The stratification ratio values more than 1.5 for organic matter and soil structure stability index can be stated that these properties can show the degradation of soil quality due to land use change. Soil quality evaluation showed that in relation to the effect of land use on soil quality index, nonlinear scoring method is superior to linear scoring, so that forest and agricultural land use had the highest and lowest soil quality index by nonlinear scoring method, respectively. Therefore, due to the high sensitivity of soil quality to land use change, preventing land use change is one of the necessary measures for sustainable soil management in the study area.

کلیدواژه‌ها [English]

  • Soil erodibility factor
  • Sensitivity index
  • Stratification ratio
  • Soil quality index
  • Minimum data set
- Acton, D. F., and Gregorich, L. J. 1995. The health of our soils: toward sustainable agriculture in Canada.
2- Adhikary, P. P., Tiwari, S. P., Mandal, D., Lakaria, B. L., and Madhu, M. 2014. Geospatial comparison of four models to predict soil erodibility in a semi-arid region of Central India. Environmental earth sciences, 72(12): 5049-5062.
3- Andrews, S. S., Karlen, D. L., and Mitchell, J. P. 2002. A comparison of soil quality indexing methods for vegetable production systems in Northern California. Agriculture, ecosystems & environment, 90(1): 25-45.
4- Askari, M. S., and Holden, N. M. 2015. Quantitative soil quality indexing of temperate arable management systems. Soil and Tillage Research, 150: 57-67.
5- Askari, M. S., and Holden, N. M. 2014. Indices for quantitative evaluation of soil quality under grassland management. Geoderma, 230: 131-142.
6- Ayoubi, S., and Moazzeni Dehaghani, S. 2020. Identifying impacts of land use change on soil redistribution at different slope positions using magnetic susceptibility. Arabian Journal of Geosciences, 13: 1-11.
7- Babu, S., Mohapatra, K. P., Yadav, G. S., Lal, R., Singh, R., Avasthe, R. K., Das, A., Chandra, P., Gudade, B. A., and Kumar, A. 2020. Soil carbon dynamics in diverse organic land use systems in North Eastern Himalayan ecosystem of India. Catena, 194: 104785.
8- Bayabil, H. K., Dile, Y. T., Tebebu, T. Y., Engda, T. A., & Steenhuis, T. S. 2019. Evaluating infiltration models and pedotransfer functions: Implications for hydrologic modeling. Geoderma, 338, 159-169.
8- Bakhshandeh, E., Hossieni, M., Zeraatpisheh, M., and Francaviglia, R. 2019. Land use change effects on soil quality and biological fertility: a case study in northern Iran. European Journal of Soil Biology, 95: 103119.
9- Banaei, H. M. 1998. Soil moisture and temperature regimes map of Iran (1: 2500000). Soil and Water Research Institute. (in Persian)
10- Bayabil, H. K., Dile, Y. T., Tebebu, T. Y., Engda, T. A., and Steenhuis, T. S. 2019. Evaluating infiltration models and pedotransfer functions: Implications for hydrologic modeling. Geoderma, 338: 159-169.
11- Blake, G. R., and Hartge, K. H. 1986. Bulk density. Methods of soil analysis: Part 1 Physical and mineralogical methods, 5, 363-375.
12- Bonilla, C. A., and Johnson, O. I. 2012. Soil erodibility mapping and its correlation with soil properties in Central Chile. Geoderma, 189: 116-123.
13- Chandel, S., Hadda, M. S., and Mahal, A. K. 2018. Soil quality assessment through minimum data set under different land uses of submontane Punjab. Communications in Soil Science and Plant Analysis, 49(6): 658-674.
14- Corral-Fernández, R., Parras-Alcántara, L., and Lozano-García, B. 2013. Stratification ratio of soil organic C, N and C: N in Mediterranean evergreen oak woodland with conventional and organic tillage. Agriculture, ecosystems and environment, 164: 252-259.
15- Davari, M., Gholami, L., Nabiollahi, K., Homaee, M., and Jafari, H. J. 2020. Deforestation and cultivation of sparse forest impacts on soil quality (case study: West Iran, Baneh). Soil and Tillage Research, 198: 104504.
16- Demir, S., Akdoğan, Y., İrfan, O. G. U. Z., and Koçyiğit, R. 2021. Comparison of the K factor in different areas on the slope. Journal of New Results in Science, 10(1): 46-53.
17- Dou, Y., Yang, Y., An, S., and Zhu, Z. 2020. Effects of different vegetation restoration measures on soil aggregate stability and erodibility on the Loess Plateau, China. Catena, 185: 104294.
18- Duan, L., Sheng, H., Yuan, H., Zhou, Q., and Li, Z. 2021. Land use conversion and lithology impacts soil aggregate stability in subtropical China. Geoderma, 389: 114953.
19- Dutal, H., and Reis, M. 2020. Determining the effects of land use on soil erodibility in the Mediterranean highland regions of Turkey: A case study of the Korsulu stream watershed. Environmental monitoring and assessment, 192(3): 1-15.
20- Emadi, M., Baghernejad, M., and Memarian, H. R. 2009. Effect of land-use change on soil fertility characteristics within water-stable aggregates of two cultivated soils in northern Iran. Land Use Policy, 26(2): 452-457.
21- Emadi, M., Emadi, M., Baghernejad, M., Fathi, H., and Saffari, M. 2008. Effect of land use change on selected soil physical and chemical properties in North Highlands of Iran. Journal of Applied sciences, 8(3): 496-502.
22- Franzluebbers, A. J. 2002. Soil organic matter stratification ratio as an indicator of soil quality. Soil and Tillage Research, 66(2): 95-106.
23- Gajić, B. 2013. Physical properties and organic matter of Fluvisols under forest, grassland, and 100 years of conventional tillage. Geoderma, 200: 114-119.
24- Gee, G. W., Bauder, J. W., and Klute, A. 1986. Methods of soil analysis, part 1, physical and mineralogical methods. Soil Science Society of America Book Series. American Society of Agronomy, Inc. and Soil Science Society of America, Inc. Madison, Wisconsin, 404-410.
25- Govaerts, B., Sayre, K. D., and Deckers, J. 2006. A minimum data set for soil quality assessment of wheat and maize cropping in the highlands of Mexico. Soil and tillage research, 87(2): 163-174.
26- Guo, L., Sun, Z., Ouyang, Z., Han, D., and Li, F. 2017. A comparison of soil quality evaluation methods for Fluvisol along the lower Yellow River. Catena, 152: 135-143.
27- Haghighi, F., Gorji, M., and Shorafa, M. 2010. A study of the effects of land use changes on soil physical properties and organic matter. Land Degradation & Development, 21(5): 496-502.
28- Huang, T. C., and Lo, K. F. A. 2015. Effects of land use change on sediment and water yields in Yang Ming Shan National Park, Taiwan. Environments, 2(1): 32-42.
29- Kavian, A., Azmoodeh, A., and Solaimani, K. 2014. Deforestation effects on soil properties, runoff and erosion in northern Iran. Arabian Journal of Geosciences, 7(5): 1941-1950.
30- Kemper, W. D., and Rosenau, R. C. 1986. Aggregate stability and size distribution.
31- Khalilmoghadam, B., Afyuni, M., Abbaspour, K. C., Jalalian, A., Dehghani, A. A., and Schulin, R. 2009. Estimation of surface shear strength in Zagros region of Iran—a comparison of artificial neural networks and multiple-linear regression models. Geoderma, 153(1-2): 29-36.
32- Li, D., Gao, G., Lü, Y., and Fu, B. 2016. Multi-scale variability of soil carbon and nitrogen in the middle reaches of the Heihe River basin, northwestern China. Catena, 137: 328-339.
33- Liu, M., Han, G., Li, Z., Zhang, Q., and Song, Z. 2019. Soil organic carbon sequestration in soil aggregates in the karst Critical Zone Observatory, Southwest China. Plant, Soil and Environment, 65(5): 253-259.
34- Liu, M., Han, G., Li, Z., Liu, T., Yang, X., Wu, Y., and Song, Z. 2017. Effects of slope position and land use on the stability of aggregate-associated organic carbon in calcareous soils. Acta Geochimica, 36(3): 456-461.
35- Mganga, K. Z., Razavi, B. S., and Kuzyakov, Y. 2016. Land use affects soil biochemical properties in Mt. Kilimanjaro region. Catena, 141: 22-29.
36- Molaei, A. M., Salehi, M., Karimian, E. M., and Mosleh, Z. 2020. Effect of Land-Use Change on some Physical and Chemical Indices of Soil Quality in the Bazoft Region, (Chaharmahal-Va-Bakhtiari Province). (in Persian with English Abstract)
37- Morgan, R. P. C. 2009. Soil erosion and conservation. John Wiley & Sons.
38- Nabiollahi, K., Golmohamadi, F., Taghizadeh-Mehrjardi, R., Kerry, R., and Davari, M. 2018. Assessing the effects of slope gradient and land use change on soil quality degradation through digital mapping of soil quality indices and soil loss rate. Geoderma, 318: 16-28.
39- Nabiollahi, K., Taghizadeh-Mehrjardi, R., Kerry, R., and Moradian, S. 2017. Assessment of soil quality indices for salt-affected agricultural land in Kurdistan Province, Iran. Ecological indicators, 83: 482-494.
40- Novara, A., Keesstra, S., Cerdà, A., Pereira, P., and Gristina, L. 2016. Understanding the role of soil erosion on CO2-C loss using 13C isotopic signatures in abandoned Mediterranean agricultural land. Science of the Total Environment, 550: 330-336.
41- Ostovari, Y., Ghorbani-Dashtaki, S., Kumar, L., and Shabani, F. 2019. Soil erodibility and its prediction in semi-arid regions. Archives of Agronomy and Soil Science, 65(12): 1688-1703.
42- Ostovari, Y., Ghorbani-Dashtaki, S., Bahrami, H. A., Naderi, M., Dematte, J. A. M., and Kerry, R. 2016. Modification of the USLE K factor for soil erodibility assessment on calcareous soils in Iran. Geomorphology, 273: 385-395.
43- Pérez-Rodríguez, R., Marques, M. J., and Bienes, R. 2007. Spatial variability of the soil erodibility parameters and their relation with the soil map at subgroup level. Science of the Total Environment, 378(1-2): 166-173.
44- Pham, T. G., Degener, J., and Kappas, M. 2018. Integrated universal soil loss equation (USLE) and Geographical Information System (GIS) for soil erosion estimation in A Sap basin: Central Vietnam. International Soil and Water Conservation Research, 6(2): 99-110.
45- Pieri, C. J. M. G. (eds.) 1992. Fertility of soils: a future for farming in the West African Savannah. Springer- Verlag, Berline.
46- Rahmanipour, F., Marzaioli, R., Bahrami, H. A., Fereidouni, Z., and Bandarabadi, S. R. 2014. Assessment of soil quality indices in agricultural lands of Qazvin Province, Iran. Ecological indicators, 40: 19-26.
47- Raiesi, F. 2017. A minimum data set and soil quality index to quantify the effect of land use conversion on soil quality and degradation in native rangelands of upland arid and semiarid regions. Ecological Indicators, 75: 307-320.
48- Raiesi, F., and Kabiri, V. 2016. Identification of soil quality indicators for assessing the effect of different tillage practices through a soil quality index in a semi-arid environment. Ecological Indicators, 71: 198-207.
49- Romero, C. C., Stroosnijder, L., and Baigorria, G. A. 2007. Interrill and rill erodibility in the northern Andean Highlands. Catena, 70(2): 105-113.
50- Sa, J. C. D. M., and Lal, R. 2009. Stratification ratio of soil organic matter pools as an indicator of carbon sequestration in a tillage chronosequence on a Brazilian Oxisol. Soil and Tillage Research, 103(1): 46-56.
51- Six, J., and Paustian, K. 2014. Aggregate-associated soil organic matter as an ecosystem property and a measurement tool. Soil Biology and Biochemistry, 68: A4-A9.
52- Soleimani, A., Hosseini, S. M., Bavani, A. R. M., Jafari, M., and Francaviglia, R. 2019. Influence of land use and land cover change on soil organic carbon and microbial activity in the forests of northern Iran. Catena, 177: 227-237.
53- Song, Y., Liu, L., Yan, P., and Cao, T. 2005. A review of soil erodibility in water and wind erosion research. Journal of Geographical Sciences, 15(2): 167-176.
54- Sparks, D. L., Page, A. L., Helmke, P. A., Leoppert, R. H., Soltanpour, P. N., Tabatabai, M. A., Johnston, G. T. and Summer, M. E. 1996. Methods of Soil Analysis, Soil Science Society of American Journal. Book Series No. 5.
55- Taleshian Jeloudar, F., Ghajar Sepanlou, M., and Emadi, M. 2018. Impact of land use change on soil erodibility. Global Journal of Environmental Science and Management, 4(1): 59-70.
56- Tolimir, M., Kresović, B., Životić, L., Dragović, S., Dragović, R., Sredojević, Z., and Gajić, B. 2020. The conversion of forestland into agricultural land without appropriate measures to conserve SOM leads to the degradation of physical and rheological soil properties. Scientific Reports, 10(1): 1-12.
57- Tufa, M., Melese, A., and Tena, W. 2019. Effects of land use types on selected soil physical and chemical properties: the case of Kuyu District, Ethiopia. Eurasian Journal of Soil Science, 8(2): 94-109.
58- Vaezi, A. R., Sadeghi, S. H. R., Bahrami, H. A., and Mahdian, M. H. 2008. Modeling the USLE K-factor for calcareous soils in northwestern Iran. Geomorphology, 97(3-4): 414-423.
59- Varasteh Khanlari, Z., Golchin, A., Alamdari, P., and Mosavi Kupar, S. A. 2019. The Effects of Changing Forest Land to Paddy Field on the Physical and Chemical Properties of the Soil and Determining Sensitive Indices to Land Use Change. Iranian Journal of Soil and Water Research, 50(8): 1911-1925. (in Persian with English Abstract)
60- Vasu, D., Singh, S. K., Ray, S. K., Duraisami, V. P., Tiwary, P., Chandran, P., Nimkar, A. M., and Anantwar, S. G. 2016. Soil quality index (SQI) as a tool to evaluate crop productivity in semi-arid Deccan plateau, India. Geoderma, 282: 70-79.
61- Walkley, A., and Black, I. A. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil science, 37(1): 29-38.
62- Walling, D. E., and Webb, B. W. 1980. The spatial dimension in the interpretation of stream solute behaviour. Journal of Hydrology, 47(1-2): 129-149.
63- Wang, B., Zheng, F., and Guan, Y. 2016. Improved USLE-K factor prediction: A case study on water erosion areas in China. International Soil and Water Conservation Research, 4(3): 168-176.
64- Wang, B., Zheng, F., Römkens, M. J., and Darboux, F. 2013. Soil erodibility for water erosion: A perspective and Chinese experiences. Geomorphology, 187: 1-10.
65- Wang, H., Zhang, G. H., Li, N. N., Zhang, B. J., and Yang, H. Y. 2018. Soil erodibility influenced by natural restoration time of abandoned farmland on the Loess Plateau of China. Geoderma, 325: 18-27.
66- Wischmeier, W. H., Johnson, C. B., and Cross, B. V. 1971. Soil erodibility nomograph for farmland and construction sites. Journal of Soil and Water Conservation, 26(5): 189-193.
67- Yu, P., Han, D., Liu, S., Wen, X., Huang, Y., and Jia, H. 2018. Soil quality assessment under different land uses in an alpine grassland. Catena, 171: 280-287.
68- Zaher, H., Sabir, M., Benjelloun, H., and Paul-Igor, H. 2020. Effect of forest land use change on carbohydrates, physical soil quality and carbon stocks in Moroccan cedar area. Journal of environmental management, 254: 109544.
69- Zeng, Q., Darboux, F., Man, C., Zhu, Z., and An, S. 2018. Soil aggregate stability under different rain conditions for three vegetation types on the Loess Plateau (China). Catena, 167: 276-283.
70- Zhao, F. Z., Bai, L., Wang, J. Y., Deng, J., Ren, C. J., Han, X. H., Yang G. H. and Wang, J. 2019. Change in soil bacterial community during secondary succession depend on plant and soil characteristics. Catena, 173: 246-252.