نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم ومهندسی خاک. دانشگاه علوم کشاورزی و منابع طبیعی گرگان> گرگان. ایران

2 گروه علوم و مهندسی خاک. دانشگاه علوم کشاورزی و منابع طبیعی گرگان. گرگان. ایران

چکیده

امروزه کاربرد تلفیقی باکتری­های محرک رشدگیاه (PGPB[1]) و سیلیسیم (Si) به عنوان یک روش پایدار برای افزایش تولیدات کشاورزی مورد توجه قرار گرفته است. بر این اساس پژوهشی گلدانی با هدف پایش اثر جدایه­­ی استرپتومایسس[2] و مصرف خاکی سیلسیم از منبع سیلیکات کلسیم-منیزیم بر شاخص­های رشدی و فیزیولوژیک گیاه سویا رقم (DPX) به صورت فاکتوریل در قالب طرح کامل تصادفی با تیمارهای آزمایشی: مصرف خاکی سیلسیم (0، 200، 400 و 600 کیلوگرم سیلسیم در هکتار)، مایه­زنی استرپتومایسس (مایه­زنی، عدم مایه­زنی) و کاربرد تلفیقی مایه­زنی استرپتومایسس+ مصرف خاکی سیلسیم در 3 تکرار در مجوع 24  واحد آزمایشی در محوطه پردیس دانشگاه علوم کشاورزی گرگان انجام شد. بر اساس نتایج، مایه­زنی استرپتومایسس سبب بهبود تاثیر مصرف خاکی سیلسیم­ بر شاخص­های رشدی، فیزیولوژیک و جذب عناصر غذایی سویا گردید. بیشترین میزان زیست­توده اندام هوایی (3/19 گرم در گلدان)، ریشه (67/7 گرم در گلدان) ، کلروفیل کل ( 48/32  میلی­گرم در گرم وزن خشک) در تیمار کاربرد تلفیقی بالاترین سطح سیلسیم­ (600 کیلوگرم سیلسیم در هکتار) + مایه زنی استرپتومایسس (M3B) ثبت شد. روند هم­افزایی مثبت مایه­زنی استرپتومایسس در بهبود اثرات سطوح دیگر منبع سیلسیم­ بر محتوی کلروفیل با افزایش 76/41، 1/49 درصدی به ترتیب در تیمارهای تلفیقی(400 و 200 کیلوگرم سیلسیم در هکتار)+ مایه­زنی (M1B,M2B) مشهود بود. مایه­زنی استرپتومایسس تأثیر به­سزایی در افزایش غلظت سیلسیم (8/5 درصد)، نیتروژن (52/16)، فسفر (6/23 درصد)، پتاسیم (05/12 درصد) اندام هوایی در مقایسه با شاهد داشت. بر اساس نتایج، مایه­زنی استرپتومایسس با ایجاد رابطه هم­افزایی سبب بهبود اثرات سطوح سیلیکات کلسیم-منیزیم در تقویت شاخص­های رشدی (زیست توده اندام­هوایی و ریشه، حجم ریشه، ارتفاع گیاه)، محتوی کلروفیل و جذب عناصر غذایی (سیلسیم، نیتروژن، فسفر، پتاسیم) در سویا شده است.

کلیدواژه‌ها

عنوان مقاله [English]

Evaluation of Streptomyces inoculation and soil application of silicon on growth and nutrient concentration in soybean

نویسندگان [English]

  • Reza Khodadadi 1
  • REZA GHORBANINASRABADI 2

1 Soil science dep. Gorgan university of agricultural sciences and natural resources. Gorgan. IRAN

2 Soil science dep. Gorgan university of agricultural sciences and natural resources. Gorgan. IRAN

چکیده [English]

Introduction Streptomyces is the most important and dominant genus of actinomycetales with more than 664 species which some of its species may stimulate plant growth through nutritional and physiological mechanisms that include: dissolution of phosphates, production of siderophores and phytohormones, biological Nitrogen fixation and production of antifungal metabolites. Silicon has significant positive effects on improving the growth and physiological characteristics of the plant by improving the root system, biosynthesis of phytohormones, resistance to biological and non-biological stresses and nutrient uptake. Improvement of the silicon concentration in the plant depends on its availability in soil. Soil application of resources with appropriate amount of silicon is of great importance in increasing the availability and uptake of silicon. It is also documented that the co-application of plant growth promoting bacteria and silicon is a useful and efficient method to increase plant growth and yield under normal and stress conditions. Due to beneficial effects of plant growth promoting bacteria and silicon in improving crop growth and also the importance of soil application of different silicon sources, the aim of this study was to Investigate the effect of Streptomyces isolate, silicon application using calcium-magnesium silicate source and the combined application of Streptomyces + silicon on growth parameters, chlorophyll content and accumulation of some nutrients in soybean (Glycine max L.)
Materials and Methods A pot experiment was designed as factorial in a complete randomized design with 3 replications under natural light and temperature conditions. Experimental treatments included soil application of calcium-magnesium silicate source (37.9% silicon dioxide) at four levels 0 (M1), 200 (M2), 400 (M3) and 600 (M4) kg Si ha-1 and two levels of inoculation with Streptomyces isolates (no inoculation (B0) and inoculation with Streptomyces (B1). Surface-sterilized seeds were inoculated with a suspension of (107 CFU mL-1) Streptomyces isolate. The effect of experimental treatments on plant development stage (late vegetative growth period) was investigated. The soybean plants were harvested after 10 weeks of growth period from soil surface. Plant growth parameters including shoot and root biomass, root volume and plant height were determined. Also, chlorophyll content (a, b, Total) and concentration of nitrogen, silicon, phosphorus and potassium in the shoot were measured.
Results and Discussion The results of the present study showed a positive and significant effect of the co- application of silicon and Streptomyces inoculation on improvement of the growth characteristics and chlorophyll content compared to their separate application. The highest amounts of shoot biomass (19.3 g per pot), root biomass (7.6 g per pot), root volume (38.07 cm3), plant height (98 cm) and chlorophyll a (18.07 mg / g), chlorophyll b (14.4 mg / g) and total chlorophyll (32.4 mg / g) were measured in the co-application of 600 kgha-1 Si (M4) and Streptomyces inoculation (M4B). .Our results showed the improvement of soybean growth parameters could be due to the positive effect of Streptomyces isolate on plant growth promotion and utilization of calcium-magnesium silicate in soil. Combined application of silicon and Streptomyces inoculation increased the concentration of silicon, nitrogen, phosphorus and potassium in the M4B treatment compared with the lonely application of highest level of silicon source (M4) by 16.25, 7.45, 45.6, 51.7%, respectively.
Conclusion Based on the results of the present study soil application of calcium-magnesium silicate increased plant growth and physiological factors. Streptomyces inoculation improved the effects of calcium-magnesium silicate levels to enhance growth parameters, chlorophyll content and nutrient concentration (silicon, nitrogen, phosphorus and potassium) in soybeans. This study was carried out in pot experiment at the vegetative growth stage of soybean. Therefore, supplementary studies are necessary in field and harvest stage.
Keywords: Streptomyces, inoculation, silicon, soybean, plant growth

کلیدواژه‌ها [English]

  • Streptomyces
  • inoculation
  • silicon
  • soybean
  • plant growth
  1. Boroumand, N., Behbahani, M. and Dini, G. 2020. Combined effects of phosphate solubilizing bacteria and nanosilica on the growth of land cress plant. Journal of Soil Science and Plant Nutrition, 20(1):232-243.
  2. Chandrakala, C., Voleti, S.R., Bandeppa, S., Kumar, N.S., and Latha, P.C. 2019. Silicate solubilization and plant growth promoting potential of Rhizobium sp. isolated from rice rhizosphere. Silicon, 11:2895-2906.
  3. Epstein, E. 1999. Silicon. Annual Review of Plant Physiology and Plant Molecular Biology 50:641–64.
  4. Etesami, H. and Jeong, B.R. 2018. Silicon (Si): Review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants. Ecotoxicology and environmental safety, 147:881-896.

 

  1. Elmer, W.H. and Datnoff, L.E., 2014. Mineral nutrition and suppression of plant disease. Elsevier, 13:243.

 

  1. Galindo, F.S., Pagliari, P.H., Rodrigues, W.L., de Azambuja Pereira, M.R., Buzetti, S., and Teixeira Filho, M.C.M. 2020. Investigation of Azospirillum brasilense inoculation and silicon application on corn yield responses. Journal of Soil Science and Plant Nutrition, 20(4):2406-2418.

 

  1. Ghorbani-Nasrabadi, R, P. Aghaz Nashtifani, P., and M. Zebarjadi, M. 2014. Evaluation of soil Streptomyces sp. plant growth promotion traits and potential application in enhancing early maize growth and P uptake. Journal of soil management and sustainable production. 4 (3): 195-213. (In Persian with English abstract).

 

  1. Hattori, T., Sonobe, K., Araki, H., Inanaga, S., An, P., and Morita, S. 2008. Silicon application by sorghum through the alleviation of stress-induced increase in hydraulic resistance. Journal of Plant Nutrition, 31(8)1482-1495.

 

  1. Haque, F., Santos, R.M., and Chiang, Y.W. 2020. Optimizing inorganic carbon sequestration and crop yield with wollastonite soil amendment in a microplot study. Frontiers in Plant Science, 1012.

 

  1. Horstmann, J.L., Dias, M.P., Ortolan, F., Medina-Silva, R., Astarita, L.V. and Santarém, E.R., 2020. Streptomyces sp. CLV45 from Fabaceae rhizosphere benefits growth of soybean plants. Brazilian Journal of Microbiology, 51(4):1861-1871.

 

  1. Htwe, A.Z., Moh, S.M., Soe, K.M., Moe, K. and Yamakawa, T., 2019. Effects of biofertilizer produced from Bradyrhizobium and Streptomyces griseoflavus on plant growth, nodulation, nitrogen fixation, nutrient uptake, and seed yield of mung bean, cowpea, and soybean. Agronomy, 9(2):77.

 

  1. Iniyan, A.M., Wink, J., Landwehr, W., Ramprasad, E.V.V., Sasikala, C., Ramana, C.V., Schumann, P., Spröer, C., Bunk, B., Joseph, F.J.R.S. and Joshua, S.A. 2021. Streptomyces marianii sp. nov., a novel marine actinomycete from southern coast of India. The Journal of Antibiotics, 74:59–69.

 

  1. Jawahar, S. and Vaiyapuri, V. 2013. Effect of Sulphur and silicon fertilization on yield nutrient uptake and economics of rice by jawahar and V. vaiyapuri. International Research Journal of Chemistry, 1:34.

 

  1. Jog, R., Nareshkumar, G., and Rajkumar, S. 2012. Plant growth promoting potential and soil enzyme production of the most abundant Streptomyces from wheat rhizosphere. Journal of Applied Microbiology, 113:(5)1154-1164.

 

  1. Kumar, V., Kumar, P., and Khan, A. 2020. Optimization of PGPR and silicon fertilization using response surface methodology for enhanced growth, yield and biochemical parameters of French bean (Phaseolus vulgaris) under saline stress. Biocatalysis and Agricultural Biotechnology, 23:101463.

 

  1. Kim, Y.H., Khan, A.L., Waqas, M., Shim, J.K., Kim, D.H., Lee, K.Y., and Lee, I.J. 2014. Silicon application to rice root zone influenced the phytohormonal and antioxidant responses under salinity stress. Journal of Plant Growth Regulation, 33(2):137-149.

 

  1. Kostic, L., Nikolic, N., Bosnic, D., Samardzic, J., and Nikolic, M. 2017. Silicon increases phosphorus (P) uptake by wheat under low P acid soil conditions. Plant and Soil, 419 (1):447-455.

 

  1. Liang Y., Nikolic M., Bélanger R., Gong H., Song A. 2015. Effect of silicon on crop growth, yield and quality. Silicon in Agriculture, 209-223.

 

  1. Li, Q. and Ma, C. 2003. Effect of available silicon in soil on nutritive metabolism of cotton seedling. Scientia Agricultura Sinica, 36:726-730.

 

  1. Mahmood, S., Daur, I., Al-Solaimani, S.G., Ahmad, S., Madkour, M.H., Yasir, M., Hirt, H., Ali, S. and Ali, Z. 2016. Plant growth promoting rhizobacteria and silicon synergistically enhance salinity tolerance of mung bean. Frontiers in Plant Science, 7:876.

 

  1. Pati, S., Pal, B., Badole, S., Hazra, G.C., and Mandal, B. 2016. Effect of silicon fertilization on growth, yield, and nutrient uptake of rice. Communications in Soil Science and Plant Analysis., 47:(3)284-290.

 

  1. Rezakhani, L., Motesharezadeh, B., Tehrani, M.M., Etesami, H., and Hosseini, H.M. 2019. Phosphate–solubilizing bacteria and silicon synergistically augment phosphorus (P) uptake by wheat (Triticum aestivum) plant fertilized with soluble or insoluble P source. Ecotoxicology and Environmental Safety, 173:504-513.

 

  1. Rodrigues, F.A., Dallagnol, L.J., Duarte, H.S.S. and Datnoff, L.E. 2015. Silicon control of foliar diseases in monocots and dicots. Silicon and plant diseases, 67-108.

 

  1. Sakihama, Y., and Yamasaki, H. 2002. Lipid peroxidation induced by phenolics in conjunction with aluminum ions. Biologia Plantarum, 45:(2)249-254.

 

  1. Sparks, D.L., Page, A.L., Helmke, P.A., and Loeppert, R.H. (Eds.). 2020. Methods of soil analysis, part 3: Chemical methods (Vol. 14). John Wiley & Sons.

 

  1. Sharma, S.B., Sayyed, R.Z., Trivedi, M.H. and Gobi, T.A., 2013. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, 2(1):1-14.

 

  1. Shin, W., Siddikee, M.A., Joe, M.M., Benson, A., Kim, K., Selvakumar, G., Kang, Y., Jeon, S., Samaddar, S., Chatterjee, P. and Walitang, D. 2016. Halotolerant plant growth promoting bacteria mediated salinity stress amelioration in plants. Korean Journal of Soil Science and Fertilizer, 49(4):355-367.

 

  1. Vejan, P., Abdullah, R., Khadiran, T., Ismail, S. and Nasrulhaq Boyce, A. 2016. Role of plant growth promoting rhizobacteria in agricultural sustainability—A review. Molecules, 21(5):573.

 

  1. Walsh, O.S., McClintick-Chess, J. and Blanscet, S. 2017. Rate and Application Time of Plant Available Silicon on Winter Wheat Yield and Quality. ASA, CSSA and SSSA International Annual.