نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم خاک، دانشکده علوم کشاورزی، دانشگاه گیلان

2 گروه علوم خاک دانشکده کشاورزی، دانشگاه گیلان

3 گروه زراعت و اصلاح نباتات، دانشکده علوم کشاورزی دانشگاه گیلان

4 گروه فناوری و مدیریت تولید، پژوهشکده چای، موسسه تحقیقات علوم باغبانی، سازمان تحقیقات آموزش و ترویج کشاورزی، لاهیجان

چکیده

خاک به‌عنوان یکی از مهم‌ترین اجزای محیط زیست بوده و حاصلخیزی آن به صورت مستقیم و غیرمستقیم بر تغییرات کمیت و کیفیت محصول مؤثر است. به‌منظور تأمین امنیت غذایی، توسعه یک روش مناسب برای ارزیابی حاصلخیزی و بهره‌وری خاک از اهمیت زیادی برای تولید محصول برخوردار است. این پژوهش با هدف تعیین شاخص حاصلخیزی خاک با دو روش Fuzzy-AHP و پارامتریک، شناسایی عوامل محدود‌کننده حاصلخیزی خاک و مقایسه دو روش ارزیابی کمی حاصلخیزی خاک در ارتباط با عملکرد در باغ‌های چای غرب استان گیلان انجام گرفت. در مجموع 66 نمونه خاک مرکب از عمق صفر تا 30 سانتی‌متر و برگ سبز چای از بخشی از باغ‌های چای با عملکرد متفاوت برداشت شد. سپس شاخص حاصلخیزی خاک با دو روش فرایند تحلیل سلسله مراتبی فازی (SFI- Fuzzy AHP) و پارامتریک (SFI- Parametric) مورد ارزیابی قرار گرفت. نتایج نشان داد که مقدار کربن آلی، پتاسیم قابل دسترس و pH از اثرگذارترین معیارهای حاصلخیزی خاک برای تولید چای در منطقه مطالعاتی هستند. برای هر دو شاخص SFI- Fuzzy AHP و SFI- Parametric بیش‌ترین و کمترین شاخص حاصلخیزی خاک به ترتیب مربوط به باغ با عملکرد بالا و پایین بود. شاخص حاصلخیزی SFI- Fuzzy AHP در باغ‌های با عملکرد بالا و پایین از لحاظ آماری اختلاف معنی‌داری با یکدیگر نشان دادند. همچنین همبستگی بین عملکرد چای و شاخص SFI- Fuzzy AHP (63/0= R2)، بیش‌تر از شاخص SFI- Parametric (50/0= R2) بود. بنابراین تعیین شاخص‌ حاصلخیزی خاک با روش Fuzzy-AHP برای ارزیابی حاصلخیزی خاک اراضی چای‌کاری بر روش پارامتریک برتری دارد.

کلیدواژه‌ها

عنوان مقاله [English]

Assessing soil fertility index using Fuzzy-AHP and parametric methods for tea cultivation with different productivities

نویسندگان [English]

  • Houra Fayyaz 1
  • Nafiseh Yaghmaeian 2
  • Atefeh Sabouri 3
  • Ahmad Shirinfekr 4

1 Department of Soil Science, Faculty of Agricultural Sciences, University of Guilan, Iran

2 Department of Soil Science, Faculty of Agricultural Sciences, University of Guilan

3 Department of Agronomy and Plant Breeding, Faculty of Agricultural Sciences, University of Guilan, Iran

4 Agronomy& Technology Department, Tea Research Center, Horticultural Sciences Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Lahijan, Iran

چکیده [English]

The rapid growth of population demands higher land use efficiency to ensure food security. The most appropriate way to reach this goal is to increase yield per unit area. In this regard, the assessment of soil fertility and productivity is a prerequisite for developing sustainable agriculture. Soil fertility indicates the soil capability to provide optimum conditions for plant growth. Assessing soil fertility is an essential need to identify environmental-friendly strategies leading to more sustainability in agricultural systems. Soil fertility directly and indirectly affects the yield and crop quality. In order for food security and increased food production to be achieved, the development of a useful method for assessing soil fertility and productivity is fundamental. Various modeling techniques have been proposed as a useful tool to determine soil fertility. An assessment of the soil fertility status by using a soil index could provide key information to improve strategies and effective techniques for the future to achieve sustainable agriculture. The present study was conducted: (1) to determine the soil fertility index (SFI) using two methods which are conceptually different from each other including: Fuzzy-AHP and parametric methods; (2) to identify the main soil limiting factors for tea production; and (3) to compare two methods of quantitative assessment of soil fertility in relation to tea yield in tea cultivation with different productivities in west Guilan province.
Materials and Methods Based on the mean annual tea yield, the selected tea cultivation were divided into low, medium, and high productivity. Sixty-six soil samples were collected from 0 to 30 cm depth. The green tea leaves were harvested at a 2 m2 plot at each site. In this research, clay, silt, and sand content, mean weight diameter of soil aggregates, bulk density, soil pH, electrical conductivity, soil organic carbon, total nitrogen, available phosphorus, available potassium, available copper, and zinc were measured by conventional methods. Then, the soil fertility indices of tea cultivation with different productivities were determined by fuzzy-analytical hierarchy process (SFI-Fuzzy AHP) and Parametric (SFI-Parametric) analyses. The Fuzzy analytical hierarchy process is a combination of factor weights of AHP with the fuzzy values of each parameter. The product of values generated from individual fuzzification of parameters with their corresponding factor weights. All soil parameters were tested using one-way analysis of variance and the differences among means were analyzed using Tukey's significant difference test at the probability level of 0.05.The coefficients of determination for the linear regression between the two SFI values and tea yields were conducted.
Results and Discussion Results indicated that the effect of pH, available potassium and copper, mean weight diameter, and bulk density on tea yield was significant (p <0.01). The highest of organic carbon, mean weight diameter, available potassium and copper were obtained in high productivity. The highest of soil pH and bulk density were related to low productivity. The main soil limiting factors for tea production were soil organic carbon, available potassium, and soil pH. The results showed that for both SFI-Fuzzy AHP and SFI-Parametric methods, the highest and lowest soil fertility indices were related to high and low productivity, respectively. The mean SFI- Fuzzy AHP of the high productivity tea were significantly higher than low productivity tea cultivation. It was found that SFI- Fuzzy AHP is superior to SFI-Parametric to evaluation of soil fertility for tea production .So that, the correlations between crop yields and SFI- Fuzzy AHP (R2= 0.63) is higher than SFI-Parametric (R2= 0.50).
Conclusion Understanding the soil fertility status is one of the important aspects of sustainable soil management in order to optimal crop production and prevent environmental degradation. Considering the importance of yield as an important indicator in the sustainable management of agricultural ecosystems, it is expected that there is great potential for increasing crop yield by improving soil fertility. The SFI- Fuzzy AHP of the high productivity tea were significantly higher than low productivity tea cultivation and created more differentiation between various soil fertility classes in tea cultivation. Therefore, determining the soil fertility index by Fuzzy-AHP method to evaluate the soil fertility of tea cultivation is superior to the parametric method. Based on the obtained results, it is suggested that for the optimal tea production, in addition to the application of potassium fertilizer, the exact amount of which should be estimated based on the soil test results, the organic matter application should also be considered.

کلیدواژه‌ها [English]

  • Soil fertility index
  • Yield limiting factors
  • Fuzzy-AHP
  • Tea cultivation
  1. Azghadi, A., Khorassani, R., Mokarram, R., and Moezi, A. 2010. Soil fertility evaluation based on soil K, P and organic matter factors for wheat by using fuzzy logic-AHP and GIS techniques. Journal of Water and Soil, 24(5): 973-984. (in Persian).
  2. Ananthacumaraswamy, S., Hettiarachchi, L.S.K., and Dissanayake, S.M. 2003. Soil and foliar sulfur status in some tea plantations of Sri Lanka. Communications in Soil Science and Plant Analysis, 34(11-12): 1481-1497.
  3. Armenise, E., Redmile Godon, M.A., Stellaci, W.M., Ciccarese, A., and Rubino, P. 2013. Developing a soil quality index to compare soil fitness for agricultural use under different managements in the Mediterranean environment. Soil and Tillage Research, 130: 91-98.
  4. Ayoubi, S., Mohammad Zamani, S., and Khormali, F. 2010. Wheat yield prediction through soil properties using principle component analysis. Iranian Journal of Soil and Water Research, 49(1): 51-57. (in Persian).
  5. Bagherzadeh, A., Gholizadeh, A., and Keshavarzi, A. 2018. Assessment of soil fertility index for potato production using integrated Fuzzy and AHP approaches, Northeast of Iran. Eurasian Journal of Soil Science, 7(3): 203-212.
  6. Bagherzadeh, A., and Gholizadeh, A. 2016. Qualitative land suitability evaluation by parametric and fuzzy approaches for sugar beet crop in Sabzevar plain, northeast of Iran. Agricultural Research, 5(3): 277-284.
  7. Blake, G.R., and Hartge, K.H. 1986. Bulk density.  In: Klute, A (Ed.), Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods. American Society of Agronomy, Madison, WI, USA, 363-375.
  8. Cao, H., Jia, M., Song, J., Xun, M., Fan, W., and Yang, H. 2021. Rice-straw mat mulching improves the soil integrated fertility index of apple orchards on cinnamon soil and fluvo-aquic soil. Scientia Horticulturae, 278: 109837.
  9. Carter, M.R. 2002. Soil quality for sustainable land management: organic matter and aggregation interactions that maintain soil functions. Agronomy Journal, 94(1): 38-47.
  10. Chen, H.S., Liu, G.S., Yang, Y.F., Ye, X.F., and Zhou, S.H.I. 2010. Comprehensive evaluation of tobacco ecological suitability of Henan Province based on GIS. Agricultural Sciences in China, 9(4): 583-592.
  11. Cherubin, M.R., Karlen, D.L., Cerri, C.E.P., Franco, A.L., Tormena, C.A., Davies, C.A., and Cerri, C.C. 2016. Soil quality indexing strategies for evaluating sugarcane expansion in Brazil. Plos One, 11(3): e0150860.
  12. Dang, M.V. 2005. Soil-plant nutrient balance of tea crops in the northern mountainous region, Vietnam. Agriculture, Ecosystems and Environment, 105(1-2): 413-418.
  13. De Costa, W.A.J.M., Surenthran, P., and Attanayake, K.B. 2005. Tree-crop interactions in hedgerow intercropping with different tree species and tea in Sri Lanka: 2. Soil and plant nutrients. Agroforestry Systems, 63(3): 211-218.
  14. Dedeoglu, M., and Dengiz, O. 2019. Generating of land suitability index for wheat with hybrid system approach using AHP and GIS. Computers and Electronics in Agriculture, 167:105062.
  15. Delsouz Khaki, B., Honarjoo, N., Davatgar, N., Jalalian, A., and Torabi Golsefidi, H. 2017. Assessment of two soil fertility indexes to evaluate paddy fields for rice cultivation. Sustainability, 9(8):1299.
  16. Deng, Y.S., Dong, X.I.A., CAI, C.F., and Ding, S.W. 2016. Effects of land uses on soil physic-chemical properties and erodibility in collapsing-gully alluvial fan of Anxi County, China. Journal of Integrative Agriculture, 15(8):1863-1873.
  17. Dutta, R. 2011. A spatio-temporal analysis of tea productivity and quality in north east India. University of Twente, Faculty of Geo-Information Science and Earth Observation,
  18. Elaalem, M. 2013. A comparison of parametric and fuzzy multi-criteria methods for evaluating land suitability for olive in Jeffara Plain of Libya. Apcbee Procedia, 5: 405-409.
  19. Emami, H., and Astaraei, A.R. 2012. Effect of organic and inorganic amendments on parameters of water retention curve, bulk density and aggregate diameter of a saline-sodic soil. Journal of Agricultural Science and Technology, 14(7): 1625-1636.
  20. Gee, G.W., and Bauder, J.W. 1986. Particle size analysis. In: Klute A. (Ed.), Methods of Soil Analysis, Part 1. Physical and mineralogical methods. 2nd edition. American Society of Agronomy, Madison, 383-411.
  21. Han, W., Kemmitt, S.J., and Brookes, P.C. 2007. Soil microbial biomass and activity in Chinese tea gardens of varying stand age and productivity. Soil Biology and Biochemistry, 39(7): 1468-1478.‏
  22. Hesse, P.R. 1971. A text book of soil chemical analysis. Experimental Agriculture, 8(2):184.
  23. Karak, T., Paul, R.K., Boruah, R.K., Sonar, I., Bordoloi, B., Dutta, A.K., and Borkotoky, B. 2015. Major soil chemical properties of the major tea-growing areas in India. Pedosphere, 25(2): 316-328.
  24. Katyal, J.C. 2003. Soil fertility management: A key to prevent desertification. Journal of the Indian Society of Soil Science, 51(4): 378-387.
  25. Keesstra, S.D., Bouma, J., Wallinga, J., Tittonell, P., Smith, P., Cerda, A., and Fresco, L.O. 2016. The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. Soil, 2(2): 111-128.
  26. Kemper, W.D., and Rosenau, R.C. 1986. Aggregate stability and size distribution. In: Klute, A (Ed.). Methods of Soil Analysis. Part 1: Physical and Mineralogical Methods. American Society of Agronomy. Soil Science Society of America, Madison, WI, 425-442.
  27. Keshavarzi, A., Tuffour, H.O., and Bagherzadeh, A. 2020. Using fuzzy-AHP and parametric technique to assess soil fertility status in Northeast of Iran. Journal of Mountain Science, 17(4): 931-948.
  28. Knudsen, D., Peterson, G.A., and Pratt, P.F. 1983. Lithium, sodium and potassium. In: Page, A.L (Ed.). Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 9: 225-246.‏
  29. Kumar, R., Chand Hazra, G., Das, R., Majumder, S.P., and Chandra Das, A. 2019. Nutrient index of available S in soils of Howrah and South Dinajpur Districts of West Bengal, India. International Journal of Current Microbiology and Applied Sciences, 8(4): 1024-1032.
  30. Lindsay, W.L., and Norvell, W.A. 1978. Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of America Journal, 42(3): 421-428.
  31. Liu, Z., Zhou, W., Shen, J., He, P., Lei, Q., and Liang, G. 2014a. A simple assessment on spatial variability of rice yield and selected soil chemical properties of paddy fields in South China. Geoderma, 235: 39-47.
  32. Liu, Z., Zhou, W., Shen, J., He, P., Li, S., and Liang, G. 2014b. Soil quality assessment of Albic soils with different productivities for eastern China. Soil and Tillage Research, 140: 74-81.
  33. Lotfi Arpachaei, Z., Esmali Ouri, A., Hashemimajd, K., and Najafi, N. 2013. Soil fertility evaluation of Ardabil plain for wheat and potato based on some soil chemical properties by AHP and GIS Journal of Water and Soil, 27(1): 45-53. (in Persian).
  34. Malczewski, J. 2004. GIS based land-use suitability analysis: a critical overview. Progress In planning, 62 (1): 3-65.
  35. Mokarram, M., and Bardideh, M. 2012. Soil fertility evaluation for wheat cultivation by fuzzy theory approach and compared with Boolean method and soil test method in GIS area. Agronomy Journal (Pajouhesh and Sazandegi), 96: 111-123. (in Persian).
  36. Munson, S.M., Lauenroth, W.K., and Burke, I.C. 2012. Soil carbon and nitrogen recovery on semiarid Conservation Reserve Program lands. Journal of Arid Environments, 79: 25-31.
  37. Olsen, S.R., Cole, C.V., Watanabe, F.S., and Dean, L.A. 1954. Estimation of Available Phosphorous in Soils by Extraction with Sodium Bicarbonate. United States Department of Agriculture, 939.
  38. Ozturk, D., and Batuk, F. 2010. Analytic hierarchy process for spatial decision making. Sigma, 28(2): 124-137.
  39. Pilevar, A.R., Matinfar, H.R., Sohrabi, A., and Sarmadian, F. 2020. Integrated fuzzy, AHP and GIS techniques for land suitability assessment in semi-arid regions for wheat and maize farming. Ecological Indicators, 110:105887.
  40. Purnamasari, R.A., Noguchi, R., and Ahamed, T. 2019. Land suitability assessments for yield prediction of cassava using geospatial fuzzy expert systems and remote sensing. Computers and Electronics in Agriculture, 166(1): 105018.
  41. Qi, Y., Darilek, J.L., Huang, B., Zhao, Y., Sun, W., and Gu, Z. 2009. Evaluating soil quality indices in an agricultural region of Jiangsu Province, China. Geoderma, 149(3): 325-334.
  42. Rabia, A.H. 2012. A GIS based land suitability assessment for agricultural planning in Kilte Awulaelo district, Ethiopia, 4th International Congress of ECSSS, Eurosoil, Bari, Italy, 1257.
  43. Ray, S.K., and Mukhopadhyay, D. 2012. A study on physicochemical properties of soils under different tea growing regions of West Bengal (India). International Journal of Agriculture Sciences, 4(8): 325.
  44. Ruan, J., Ma, L., and Shi, Y. 2013. Potassium management in tea plantations: Its uptake by field plants, status in soils, and efficacy on yields and quality of teas in China. Journal of Plant Nutrition and Soil Science, 176(3): 450-459.
  45. Saaty, T.L., and Vargas, L.G. 2001. Models, methods, concepts and applications of the analytic hierarchy process. International Series in Operations Research and Management Science. Kluwer Academic, 160.
  46. Sedaghathoor, S., Torkashv, A.M., Hashemabadi, D., and Kaviani, B. 2009. Yield and quality response of tea plant to fertilizers. African Journal of Agricultural Research, 4(6):568-570. (in Persian).
  47. Servati, M., Jafarzadeh, A.A., Ghorban, M.A., Shahbazi, F., and Davatgar, N. 2014. Comparison of the FAO and Albero models in prediction of irrigated wheat production potentials in the Khajeh Journal of Water and Soil Science, 24(3): 1-14.
  48. Sharififar, A., Ghorbani, H., and Sarmadian, F. 2016. Soil suitability evaluation for crop selection using fuzzy sets methodology. Acta Agriculturae Slovenica, 107(1): 159-174.
  49. Silva Cruz, J.S., Junior, R.N.A., Matias, S.S.R., and Camacho-Tamayo, J.H. 2011. Spatial variability of an Alfisol cultivated with sugarcane. International Journal of Agriculture and Natural Resources, 38(1): 155-164.‏
  50. Tashayo, B., Honarbakhsh, A., Azma, A., and Akbari, M. 2020. Combined fuzzy AHP–GIS for agricultural land suitability modeling for a watershed in southern Iran. Environmental Management, 66(3): 364-376.
  51. Tsuji, M., Kuboi, T., and Konishi, S. 1994. Stimulatory effects of aluminum on the growth of cultured roots of tea. Soil Science and Plant Nutrition, 40(3): 471-476.
  52. Tuncay, T., Kilic, S., Dedeoglu, M., Dengiz, O., Baskan, O., and Bayramin, I. 2021. Assessing soil fertility index based on remote sensing and GIS techniques with field validation in a semiarid agricultural ecosystem. Journal of Arid Environments, 190: 104525.
  53. Vasu, D., Singh, S.K., Sahu, N., Tiwary, P., Chandran, P., Duraisami, V.P., Ramamurthy, V., Lalitha, M., and Kalaiselvi, B. 2017. Assessment of spatial variability of soil properties using geospatial techniques for farm level nutrient management. Soil and Tillage Research, 169: 25-34.
  54. Velasquez, E., Lavelle, P., and Andrade, M. 2007. GISQ, a multi-functional indicator of soil quality. Soil Biology and Biochemistry, 39(12): 3066-3080.
  55. Virgilio, N.D., Monti, A., and Venturi, G. 2007. Spatial variability of switchgrass (Panicum virgatum L.) yield as related to soil parameters in a small field. Field Crops Research, 101(2): 232-239.
  56. Walkley, A., and Black, I.A. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1): 29-38.
  57. Wang H., Ren-Kou, X., Ning, W., and Xing-Hui, L. 2010. Soil acidification of Alfisols as influenced by tea cultivation in eastern China. Pedosphere, 20(6): 799-806.‏
  58. Wen, B., Li, L., Duan, Y., Zhang, Y., Shen, J., Xia, M., Wang, Y., Fang, W., and Zhu, X. 2018. Zn, Ni, Mn, Cr, Pb, and Cu in soil-tea ecosystem: The concentrations, spatial relationship and potential control. Chemosphere, 204: 92-100.
  59. Yanbing, Q., Darilek, J.L., Biao, H., Yongcun, Z., Sun, W., and Gu, Z. 2009. Evaluating soil quality indices in an agricultural region of Jiangsu Province, China. Geoderma, 149(3-4): 325-334.
  60. Yemefack, M., Rossiter, D.G., and Njomana, R. 2005. Multi-scale characterization of soil variability within an agricultural landscape mosaic system in southern Cameroon. Geoderma, 125(1-2): 117-143.
  61. Zhang, X.Y., Sui, Y.Y., Zhang, X.D., Meng, K., and Herbert, S.J. 2007. Spatial variability of nutrient properties in black soil of northeast China. Pedosphere, 17 (1): 19-29.