نوع مقاله : مقاله پژوهشی

نویسندگان

1 فارغ التحصیل کارشناسی ارشد رشته علوم خاک دانشگاه زابل، دانشکده آب و خاک، دانشگاه زابل، زابل، ایران

2 استادیار گروه علوم خاک، دانشکده آب و خاک، دانشگاه زابل، زابل، ایران

3 استادیار بخش تحقیقات خاک و آب، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی گلستان، سازمان تحقیقات، آموزش و ترویج کشاورزی، گرگان، ایران

4 مربی گروه علوم خاک، دانشکده آب و خاک، دانشگاه زابل، زابل، ایران

10.22055/agen.2021.35343.1588

چکیده

مدل‌های گیاهان زراعی از بخش‌های مهم مدلسازی‌های اکولوژیک می‌باشد زیرا این مدل‌ها امکان پیش‌بینی سیستم‌های گیاهی و افزایش فهم درباره چگونگی عملکرد آنها را فراهم می‌آورد. گندم یکی از محصولات زراعی کلیدی است که در سراسر جهان کشت می‌شود، لذا مطالعه این محصول استراتژیک اهمیت ویژه‌ای دارد و این تحقیق با هدف مدلسازی عملکرد گندم با برخی خصوصیات خاک و مشخص نمودن مهم‌ترین فاکتورهای خاکی موثر در عملکرد گندم در مزرعه آموزشی و تحقیقاتی دانشگاه زابل انجام شد. نمونه‌برداری از خاک سطحی (30 – 0 سانتی‌متری) صورت گفت و بافت خاک، واکنش خاک، هدایت الکتریکی، هدایت الکتریکی ظاهری خاک، کربن آلی، فسفر، پتاسیم و ازت خاک با روش‌های معمول در نمونه‌ها اندازه گیری شدند. نمونه های گیاه گندم از پلات یک مترمربع برداشت شد و وزن دانه، وزن کل و وزن هزار دانه اندازه‌گیری شد. مدلسازی عملکرد به سه روش رگرسیونی خطی چندمتغیره، شبکه عصبی مصنوعی پرسپترون و ماشین‌های‌ بردار پشتیبان انجام شد. برای تعیین مهم‌ترین فاکتورهای خاک موثر در عملکرد گندم در این پژوهش از آنالیز حساسیت استفاده شد. نتایج مقایسه مدل‌های مورد استفاده در پیش-بینی اجزاء عملکرد گندم با استفاده از ویژگی‌های خاک نشان داد که بالاترین ضریب تبیین و کمترین ریشه میانگین مربع‌های خطا در تخمین هر سه شاخص عملکرد گندم مربوط به روش شبکه عصبی پرسپترون بود (وزن دانه با ضریب تبیین برابر 61/0، وزن هزار دانه با ضریب تبیین برابر 64/0 و عملکرد کل با ضریب تبیین برابر 76/0).

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Modeling wheat yield using some soil properties at the field scale (Case study: Sistan dam research farm, university of Zabol)

نویسندگان [English]

  • Alireza Dahmardeh 1
  • Ali Shahriari 2
  • Mohammad reza Pahlavan Rad 3
  • Asma Shabani 4
  • MARYAM GHOEBANI 4

1 Graduated MSc Student, Soil Science Department, Faculty of Water and Soil, University of Zabol, Zabol, Iran

2 Assistant Professor of Soil Science Department, Faculty of Water and Soil, University of Zabol, Zabol, Iran

3 Assistant Professor, Soil and Water Research Department, Golestan Agricultural and Natural Resources Research and Education Center, AREEO, Iran

4 Academic Staff, Soil Science Department, Faculty of Water and Soil, University of Zabol, Zabol, Iran

چکیده [English]

Introduction Crop yield modeling is an important part of ecological modeling because it makes possible plant production prediction and increase understanding of how it works. In other words, plant and crop growth simulation and yield modeling are mathematical expressions of plant growth stages and processes under the influence of environmental and managerial factors. Wheat is one of the key crops grown worldwide and is a source of nourishment for millions of people around the world. Therefore, studying this strategic crop is very importance. On the other hand, more than 70% of wheat and 84% of barley in Sistan and Baluchestan province were produced in Sistan plain and wheat has the highest area under cultivation among different crops, in this arid region. So, the aim of this study was modeling wheat yield with some soil characteristics and determination of the most important soil factors affecting wheat yield in the Sistan plain.
Materials and Methods This research was done in the educational and research farm of University of Zabol. Topsoil (0-30 cm) sampling of 100 soil sample was done randomly. Clay, silt, sand abundances and soil texture class, soil pH, electrical conductivity, apparent electrical conductivity of soil, organic carbon, phosphorus, potassium and nitrogen were measured by conventional methods. Wheat plant samples were taken from a one m2 plot and the grain weight, 1000-grain weight and total weight were measured. Performance modeling was performed by three methods of multi-linear regression (MLR), multi-layer perceptron (MLP) and support vector machines (SVMs) by two kernels types linear(SVM-L) and radial basic function (SVM-RBF). It should be noted, before modeling, 80% of the data were selected for modeling (or training) and 20% for testing (or validation) of the models. These data (training and validation) were the same for all models. Coefficient of determination (R2) and the root mean square error (RMSE) were the criteria for comparing the models. Sensitivity analysis was used to determine the most important soil factors affecting wheat yield.
Results and Discussion The results of soil properties analyses showed that the soil of this area is non-saline and alkaline soil, has a medium to coarse soil texture and the soil fertility conditions are poor to moderate. The results of comparing the models showed that the highest R2 and the lowest RMSE in estimating all three wheat yield indices were related to the MLP method (grain weight with R2= 0.61, 1000-grain weight with R2= 0.64 and total yield with R2= 0.76). After MLP, with less difference, the SVMs method with two kernels types of linear (grain weight with R2= 0.54, 1000-grain weight with R2= 0.44 and total yield with R2= 0.65) and radial basic function (grain weight with R2= 0.48, 1000-grain weight with R2= 0.58 and total yield with R2= 0.67) showed the better modeling and finally the MLR (grain weight with R2= 0.20, 1000-grain weight with R2= 0.27 and total yield with R2= 0.40) showed the lowest accuracy in modeling the yield components of wheat. The results of sensitivity analysis of wheat yield components showed that total soil nitrogen, clay, silt and soil organic matter had the highest on wheat yield components (grain weight: nitrogen, clay and organic matter; 1000-grain weight: nitrogen, silt and clay; and total yield: clay, organic matter and nitrogen) and soil pH had the least effect on it, maybe because of its low variation.
Conclusion Due to harsh environmental conditions in the arid regions, the study of crops yield is very important for the optimal management of facilities and resources. Investigating the application of several wheat yield modeling methods using some soil characteristics in the arid region of Sistan showed that the perceptron neural network (MLP) performed better in predicting the yield components of wheat than other models. Also, some chemical and physical properties of soil that affect the soil fertility and water storage conditions in the soil (soil nitrogen, organic matter, clay and silt contents), were the most affecting factors on the yield of wheat in this arid region. It is important to note that attention to other soil properties as well as climatic parameters and studies and monitoring wheat yield for several years can can lead to more accurate modeling of this strategic crop and thus optimal farm management.

کلیدواژه‌ها [English]

  • Wheat yield prediction
  • multi-linear regression (MLR)
  • multi-layer perceptron (MLP)
  • support vector machines (SVMs)
  • sensitivity Analysis
  • Arid regions
  1. Abhari, A. 2019. Predicting factors affecting on grain number of wheat. Journal of Plant Ecophysiology, 11(37): 63-73.
  2. Aschonitis, V. G., Lithourgidis, A. S., Damalas, C. A. and Antonopoulos, V. Z. 2013. Modelling yields of non-irrigated winter wheat in a semi-arid Mediterranean environment based on drought variability. Expl Agric., 49 (3): 448–460 C. doi:10.1017/S001447971300015X.
  3. Ayoubi, S., Mohammad zamani, S., and Khormali, F. 2010. Wheat Yield Prediction through Soil Properties Using Principle Component Analysis. Iranian Journal of Soil and Water Research, 40(1): 51-57.
  4. Barikloo, A., Alamdari, P., Moravej, K., and Servati, M. 2017. Prediction of Irrigated Wheat Yield by using Hybrid Algorithm Methods of Artificial Neural Networks and Genetic Algorithm. Journal of Water and Soil, 31(3): 715-726.
  5. Becker-Reshef, E., Vermote, A., Lindeman, M. and Justice, C. 2010. A generalized regressionbased model for forecasting winter wheat yields in Kansas and Ukraine using MODIS data. Remote Sensing of Environment, 114: 1312– 1323.
  6. Besalatpour, A. A., Shirani, H., and Eafandiyarpour, E. 2015. Modeling of Soil Aggregate Stability using Support Vector Machines and Multiple Linear Regression. Journal of Water and Soil, 29(2): 406-417.
  7. Boroghani, M., Soltani, S., Fathabadi, H., Ghezelseflu, N. and Pourhashemi, S. 2017.The Modeling of Splash Erosion Produced in Rain-Simulator Uusing Three Methods of Artificial Neural Network, Neuro-fuzzy, and Support Vector Machine. Iranian Journal of Watershed Management Science and Engineering, 10 (35): 65-72.
  8. Bushuk, W. and V. F. Rasper. 1994. Wheat production, properties and quality. Blackie academic and professional. Grait Britain.
  9. Delbari, M., Afrasiab, P., Gharabaghi, B., Amiri, M., Salehian, A. 2019. Spatial variability analysis and mapping of soil physical and chemical attributes in a salt-affected soil. Arabian Journal of Geosciences, 12: 68. https://doi.org/10.1007/s12517-018-4207-x
  10. Fathizad, H., Safari, A., Bazgir, M., and Khosravi, G. 2017. Evaluation of SVM with Kernel method (linear, polynomial, and radial basis) and neural network for land use classification. Iranian Journal of Range and Desert Research, 23(4), 729-743.
  11. Ghaley, B.B., Wösten, H., Olesen, J.E., Schelde, K., Baby, S., Karki, Y.K., Børgesen, C.D., Smith, P., Yeluripati, J., Ferrise, R., Bindi, M., Kuikman, P., Lesschen, J. P., and Porter, J.R. 2018. Simulation of soil organic carbon effects on long-term winter wheat (Triticum aestivum) production under varying fertilizer inputs. Frontiers in Plant Science, 9: 1158.
  12. Hill, M. C. 1998. Methods and guidelines for effective model calibration. U.S.Geological survey Water-Resources Investigations Rep. 98-4005.
  13. Ismail, S. M., and Ozawa, K. 2013. Improvement of crop yield, soil moisture distribution and water use efficiency in sandy soils by clay application. Applied Clay Science, 37: 81–89.
  14. Janat sadeghi, M., Shahnoushi Foroushani, N., Daneshvar kakhki, M., Dourandish, A., and Mohammadi, H. 2018. Assessing the Effective Factors on the Yield of Strategic Agricultural Products (wheat and barley) in Khorasan Razavi Province. Agricultural Economics, 12(2): 111-134.
  15. Juhos, K., Szabó, S., and Ladányi, M. 2015. Influence of soil properties on crop yield: a multivariate statistical approach. Int. Agrophys., 29: 433-440. doi: 10.1515/intag-2015-0049
  16. Kadam, P.D., Vaidya, P.H., Dhawan, A.S., and Aundhakar, A.V. 2016. Effect of tank silt and organic manures on growth, quality, yield and yield atttibutes of Okra (Abelmoschus esculentus L.). Progressive Research, 11 (Special-VI): 4219-4221.
  17. Keykha, G. 2017. Agricultural water productivity document of Sistan and Baluchestan province (northern part of the province - Sistan plain). Final report. Sistan Agricultural Research and Training Center and Natural Resources. Sistan and Baluchestan Agricultural Jihad Organization. 191 p.
  18. Khavari, F., Soltani, A., Akram Ghaderi, F., Gazanchian, GH. and Arabameri, R. 2012. Modeling leaf production and senescence in wheat. Journal of Crop Production, 1(3): 17-32.
  19. Lal, R.2020. Soil organic matter content and crop yield. Journal of Soil and Water Conservation, 75 (2): 27A-32A. DOI: https://doi.org/10.2489/jswc.75.2.27A
  20. Mirakzehi, K., Pahlavan-Rad, M. R., Shahriari, A., & Bameri, A. 2018. Digital soil mapping of deltaic soils: A case of study from Hirmand (Helmand) river delta. Geoderma, 313, 233-240.
  21. Mojid, M. A., Syed, M., and Guido, W. 2010. Growth, yield and water use efficiency of wheat in silt loam-amended loamy sand. Journal of The Bangladesh Agricultural University. 7. 10.3329/jbau.v7i2.4753.
  22. Mokhtari, M., and Najafi, A. 2015. Comparison of Support Vector Machine and Neural Network Classification Methods in Land Use Information Extraction through Landsat TM Data. Journal of Water and Soil Science, 19 (72):35-45.
  23. Mousavi Zadeh, S., Honar, T., and Rahmati, H. 2017. Simulation of Seed Yield and Dry Matter of Canola Under The Condition of Water Stress Using SWAP Model. Irrigation Sciences and Engineering, 40(1-1): 153-165.
  24. Nazariyat, S., Hodaji, M., and Besalatpour, A. 2017. Modeling the Pb Distribution Using Support Vector Machines in Surface Soil of the Lands Surrounding the Dezful-Ahvaz Road. Iranian Journal of Soil Research, 31(1): 143-153.
  25. Niedbala, G. and Kozlowski, R. J. 2019. Application of Artificial Neural Networks for Multi-Criteria Yield Prediction of Winter Wheat. Journal of Agricultural Sciences and Technology, 21: 51-61.
  26. Norouzi, M., Ayoubi, S., Jalalian, A., Khademi, H., Dehghani, A.A. 2010. Predicting rainfed wheat quality and quantity by artificial neural network using terrain and soil characteristics. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 60 (4), 341– 352.
  27. Oldfield, E., Bradford, M., and Wood, S. 2019. Global meta-analysis of the relationship between soil organic matter and crop yields. Soil, 5: 15–32.
  28. Pantazi X.E. et al. 2016. Wheat yield prediction using machine learning and advanced sensing techniques, Computers and Electronics in Agriculture, 121: 57-65.
  29. Schjonning, P., Jensen, J. L., Bruun, S., Jensen, L. S., Christensen, B. T., Munkholm, L. J., Oelofse, M., Baby, S., and Knudsen, L. 2018. The Role of Soil Organic Matter for Maintaining Crop Yields: Evidence for a Renewed Conceptual Basis. Advances in Agronomy, 150: 35-79. doi.org/10.1016/bs.agron.2018.03.001.
  30. Shabani, A., Haghnia, G., Karimi, A., and Ahmadi, M. 2012. Influence of Topography and Soil Characteristics on the Rainfed Wheat Yield in Sisab Region, Northeastern Iran. Journal of Water and Soil, 26(4): 922-932.
  31. Shahrisvand, M., Akhoondzadeh Hanzaei, M., and Souri, A. 2015. Comparison of Support Vector Machine, Artificial Neural Network and Decision Tree Classifiers for Dust Detection in Modis Imagery. Journal of Geomatics Science and Technology, 4 (3):131-144.
  32. Sitharam, T.G., Samui, P., and Anbazhagan, P. 2008. Spatial variability of rock depth in temperate forests.Geotechnical and Geological Engineering . 26:5 .503-517.
  33. Sudduth K.A., Drummond S.T., Birrell S.J., and Kitchen, N.R. 1996. Analysis of spatial factors influencing crop yield, in Proc. 3rd Int. Conf. On Precision Agriculture, P.C. Robert et al. (ed.), pp. 129-140.
  34. Taghizadeh-Mehrjerdi, R., Seyed-jalali S.A., and Sarmadian F. 2016. Prediction of Corn Spatial yield by soil digital mapping in Gotend region (Khuzestan Province, Iran). Journal of plant production, 19 (4): 70-9.
  35. Tahir, S., and Marschner, P. 2016. Clay addition to sandy soil - effect of clay concentration and ped size on microbial biomass and nutrient dynamics after addition of low C/N ratio residue. Journal of Soil Science and Plant Nutrition, 16 (4): 864-875.
  36. Tatari, M., Koocheki, A., and Nassiri Mahallati, M. 2009. Dryland wheat yield prediction using precipitation and edaphic data by applying of regression models. Iranian Journal of Field Crops Research, 7(2): 357-365.
  37. Zarrini Bahador, M., Givi, J., and Taghizadeh Mehrjerdi, R. 2018. Digital Spatial Prediction of Rainfed Wheat Yield (Case Study: Badr Watershed, Qorveh, Kurdistan Province). Journal of Agricultural Engineering, 41 (3): 113-125.