نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد رشته مهندسی مکانیک بیوسیستم- دانشگاه آزاد اسلامی- واحد علوم و تحقیقات، ایران

2 استاد دانشگاه آزاد اسلامی- واحد علوم و تحقیقات، ایران

3 دانشیار گروه فنی کشاورزی - پردیس ابوریحان- دانشگاه تهران، تهران، ایران

چکیده

در این تحقیق کارگیر ربات سمپاش مبتنی بر مکانیزم استوارت طراحی و ساخته شد که بتواند به کمک یک دستکار (بازوی مکانیکی رباتیک) عملیات سمپاشی داخل گلخانه را انجام دهد. این کارگیر سمپاش دارای شش درجه آزادی می‌باشد که بر اساس مکانیزم استوارت با محرکهای دورانی به کمک شش استپ موتور عملیات سم‌پاشی گیاه را انجام می‌دهد، کاراندازهای این مکانیزم با برد آردوینو و رله‌های آن راه‌اندازی می‌گردند. در این روش به استپ موتورهای مذکور به صورت دو به دو در هر لحظه توسط میکروکنترلر فرمان داده می‌شود. این استپ موتورها حرکت خود را بوسیله بازو و رابط‌ها به سکو متحرک انتقال میدهد، و این سکو در سه جهت مختلف زاویه پذیری پیدا می‌کند. با توجه به زاویه دوران بازوها، سکوی متحرک حداکثر زاویه 18 درجه با سطح افق پیدا می‌کند که این امر باعث می‌گردد در هنگام عملیات سمپاشی، سم بکار رفته با پوشش‌ مناسب روی گیاه مورد نظر پاشیده ‌شود. ارزیابی دقیق عملکرد کارگیر سمپاش و تعیین ارتفاع پاشش سم در فواص مختلف هنگام سمپاشی در محیط آزمایشگاه انجام گردید و مشخص شد در فاصله 5/0 متری از نازل، ارتفاع پاشش 100 سانتیمتر، در فاصله1 متری از نازل، ارتفاع پاشش 7/57 سانتی متر و در فاصله 5/1 متری، ارتفاع پاشش 12 سانتی‌متر بود. طبق ارزیابی انجام شده عملیات پاشش در فاصله 5/0 متری از نازل در ارتفاع بیشتری نسبت به سایر فاصله‌ها انجام گردید.

کلیدواژه‌ها

عنوان مقاله [English]

Kinematics of the Platform Stewart Sprayer End effector

نویسندگان [English]

  • Somayeh Torktaz 1
  • Ali Mohammad Borghaee 2
  • Jafar Massah 3

1 Master Student, Department of Mechanics of Biosystems Engineering, Science and Research branch, Islamic Azad University, Tehran, Iran

2 Professor Department of Mechanics of Biosystems Engineering, Science and Research branch, Islamic Azad University, Tehran, Iran

3 Associate Professor, Department of Agrotechnology, College of Abouraihan, University of Tehran, Tehran, Iran

چکیده [English]

Introduction :Robots are suitable for doing things that are tedious, difficult or dangerous to humans. One of the recent applications of robots is to perform various operations in the agricultural sector. The limitations in human resources and the demand for higher efficiency per unit area has made it necessary to use robots in agriculture. In the study, a robot spraying manipulator based on the Stewart mechanism was designed and constructed to perform spraying operations inside the greenhouse with the help of a manual end effector (mechanical robotic arm). In general, manually applied spraying does not spread evenly on all plants, resulting in increased toxic waste, there are also spraying labor costs in this method, so it is not economically viable. Hand spraying is a problem caused by direct contact with the toxin, which puts people in direct contact with chemicals at greater risk for a variety of diseases. Therefore, most of the toxic chemicals used to overcome weeds are a threat to humans and the environment. By poisoning the skin, mouth or breathing can be highly toxic.
Materials and Methods: The end effector sprayer is based on Stewart's mechanism and by using six degrees of freedom, allowing nozzles to spray at different angles on plants. For this purpose, six step motors were used to provide the rotational force of the operator's end effectors, which was launched with the Arduino system. In order to supply electrical energy, operator's end effectors and Arduino devices utilized a 500-watt computer power supply, calculating the dynamics and reverse kinematics of the Stewart platform, we specified unique codes for its rotation. In this study, inverse kinematics was used to obtain the position of the joints by knowing the position of the center the moving platform and connecting the connectors to the moving platform by the hinge joints, and to the actuators arm by the spherical joint. The dynamics of the actuator, the movement of the moving platform by the actuators was calculated. In this method, the direction of the moving platform the step motors are driven a time by the microcontroller in pairwise manner. Using arms and linkers, stepper motors could move the platform in three different angles. Due to the angle and radius of the arm's, the moving platform has an angle of 18 degrees to the horizon, which makes it able to spray directly into the target plant and make a same coating. Also the velocity and acceleration of the moving platform movement were calculated according to the rotational speed of the stepper motors the maximum velocity and linear acceleration of the moving platform are calculated 141 mm / s and 244mm/s2 respectively.
Results and Discussion: In order to accurately evaluate the performance of the sprayer, laboratory experiments were carried out to verify the performance of the control system and determine the height of spraying at different intervals. The end effector nozzle height was 117 cm above the ground, and the moving platform end effector with zero degree angle, and 18 degree spraying. It was determined that at a distance of 0.5 m 1 m and 1.5 m from the nozzle, the spraying heights were 100 cm, 57.7 cm and 12 cm accordingly. Based on this evaluation, spraying operation which was carried out at a distance of 0.5 m from the nozzle could reach highest level of spraying height. Finally, after modeling the end effector with solidworks software, it was simulated in the Adams software environment and by transferring the model to Adams, the force applied to the moving platform by the actuators, the velocity and acceleration of the moving platform were investigated. In the simulation, the applied force was evaluated by a pair of actuators on the moving platform, with the software output predicting the applied force correctly. In examining the linear velocity of the moving platform, the software output was about 5 cm/s more than the actual value and also in the simulation of linear platform moving acceleration, the software output was equal to the calculated value.
Conclusion: According to studies, this is the first time that the platform has been used in robotic sprinklers, and could be a reference for further research in the field due to its innovation. This end effector had no singularity at an angle of 0 to 18 degrees and in both directions, spraying had a 10% difference in spraying. According to the simulation results performed with Adams software, the amount of force applied by the propellers was linear on the moving platform. Moreover, according to the simulation results with the aforementioned software, the acceleration changes of the moving platform were also linear.

کلیدواژه‌ها [English]

  • Sprayer end effector
  • Platform Stewart
  • Sprayer
  • Robot
  • Greenhouse
  1. References

    1. Gan-Mor S., Ronen B., Kazaz I., Josef S., Bilanki Y. (1997), “Guidance for Automatic Vehicle for Greenhouse Transportation", ACTA Horticulture, Vol 443, pp. 99-104.
    2. Haire, B. (2003). “UGA Scientists Develop 'row-bot'- Farming Robots not Science fiction but technical fact". Technical Report. Georgia Faces, University of Georgia.

     

    1. Masoudi, H., Alimardani, R.,  Omid, M.,  Mohtasebi, S and Bagheri, S. (2011), Design, Fabrication and Evaluation of a Mobile Robot for Spraying in Greenhouses, Journal of Agricultural Engineering Research.
    2. Mosalanejad, H., Minaei, S.,  Borghei, A.M and Farzaneh. B. (2019). Design and construction of a dedicated greenhouse sprayer robot and its performance test, National Conference on Modern Science and Technology.
    3. Oberti, March, M. Tirelli, P. Calcante, A. Iriti, M. Hocevar. M. Baur. J. Pfaff. J. Schütz, C and Ulbrich.H. (2013), Elective spraying of grapevine’s diseases by a modular agricultural robot. Journal of Agricultural Engineering.
    4. Rafigh, A., Mashhadi Mighani, H., Kalantari, D., Kalantari and Mosavi Khorasani. M. (2013). Green House Spraying Automation Using Mobile Robots. Mechanical Sciences in agricultural machinery, Vol. 1.
    5. Sammons, P.J.; Tomonari, F and Bulgin, A. (2005). “Autonomous Pesticide spraying robot for use in a greenhouse”. Australian Conference on Robotics and Automation, 1-9, ISBN 0-9587583-7-9, December 2005, Sydney, Australia
    6. Shubhangi, B., Londhe, , and Sujata. (2017). Remotely operated pesticide sprayer robot in Agricultural field. International Journal of Computer Applications, Volume 167.
    7. Subramanian, V., Burks, T.F. and Singh, S. (2005). “Autonomous Greenhouse Sprayer Vehicle Using Machine Vision and Radar for Steering Control”. Applied Engineering in Agriculture, Vol. 21, No. 5, 935-943, ISSN 0883-8542.
    8. Craig, J. (1989). Introduction to robotics: mechanics and control, ISBN 964-6379-29-X
    9. Tehrani, A., Totonchi, A., and Nabavi, N. (2014). Kinematic analysis of a flat Stewart parallel robot 6-6 with a new method, ISME2014 Conference. (In Persian)