نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه زراعت، دانشکده کشاورزی، دانشگاه ارومیه، ایران

2 استادیار گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه ارومیه، ایران

3 دانش آموخته دکتری گروه زراعت، دانشکده کشاورزی، دانشگاه ارومیه، ایران

4 دانشجوی دکتری گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه ارومیه، ایران

چکیده

به منظور بررسی تأثیر ورمی‌کمپوست،کودهای زیستی و نیتروژن بر عملکرد کمی و کیفی بادرشبو تحت شرایط مختلف رطـوبتی، آزمایشـی بـه صورت فاکتوریل در قالب طرح بلوک‌های کامل تصادفی با سه تکرار انجام گردید. تیمارهای آزمایشی شامل آبیاری (I) در سه سطح 40، 60 و 80 درصد رطوبـت قابـل اسـتفاده در عمـق توسعه ریشه به عنوان فاکتور اول و حاصلخیزکننده‌های خاک در پنج سطح: عدم مصرف کود (F0)، اوره (Ure) (150 کیلوگرم در هکتار)، باکتری‌های آزادزی تثبیت‌کننده نیتروژن (NFB)، ورمی‌کمپوست (V)و ورمی‌کمپوست + باکتری‌های آزادزی تثبیت‌کننده نیتروژن (V+NFB) به عنوان فاکتور دوم اعمال گردید. نتایج نشان داد تنش کم‌آبی منجر به کاهش معنی‌دار مقدار عناصر غذایی (روی، منگنز و مس) و رنگیزه‎های فتوسنتزی گردید، در حالیکه گیاهان تلقیح شده با V+NFB باعث افزایش معنی‌دار مقدار عناصر روی (Zn)، منگنز (Mn) و مس (Cu) نسبت به کاربرد جداگانه حاصلخیز کننده خاک گردید. همچنین کاربرد ترکیبی V+NFB موجب افزایش میزان کلروفیل a (45 %)، کلروفیل b (50 %)، کلروفیل کل (46 %) و کاروتنوئید (39 %) نسبت به تیمار شاهد شد. محتوای فنل کل، فلاونوئید، درصد مهار رادیکال DPPH ، درصد محتوای رطوبت نسبی و عملکرد خشک بوته بادرشبو به ترتیب منجر به افزایش 36، 37 ، 35 ، 29 و 31 درصد در شرایط آبیاری مطلوب و 31، 29 ،30 ، 21 و 23 درصد در شرایط تنش متوسط و 21، 19 ، 18، 17 و 17 درصد در شرایط تنش شدید در گیاهان تلقیح شده با V+NFB شد.

کلیدواژه‌ها

عنوان مقاله [English]

Investigation of the effect of vermicompost, biofertilizers and nitrogen on the quantitative and qualitative performance of Dracocephalum moldavica L. under different moisture conditions

نویسندگان [English]

  • Amir Rahimi 1
  • Behnam Doulati 2
  • Saeid Heydarzadeh 3
  • Fatemeh Ahmadi 4

1 Assistant Professor, Department of Plant Protection and Genetics, Faculty of Agriculture, Urmia University, Iran

2 Assistant Professor, Department of Soil Science, Faculty of Agriculture, Urmia University, Iran

3 PhD Graduate, Department of Plant Protection and Genetics, Faculty of Agriculture, Urmia University, Iran

4 Soil science department, faculty of agriculture, urmia university, urmia. Iran

چکیده [English]

Today, water scarcity is one of the biggest concerns of agriculture in arid and semi-arid areas. In order to investigate the effect of vermicompost, biofertilizers and nitrogen on the quantitative and qualitative performance of Badershob under different moisture conditions, a factorial experiment was performed in the form of a randomized complete block design with three replications. Experimental treatments, including irrigation (I) at three levels of 40, 60 and 80% moisture, can be used at the root development depth as the first factor and soil fertility at five levels: non-consumption of fertilizer (F0), urea (150 kg per hectare). Nitrogen-stabilizing release (NFB), vermicompost (V) and vermicompost + release nitrogen-fixing (V + NFB) release bacteria were applied as the second factor. The results showed that water scarcity led to a significant reduction in the amount of nutrients (zinc, manganese and copper) and photosynthetic pigments, while plants inoculated with V + NFB significantly increased the amount of zinc (Zn), manganese (Mn) and Copper (Cu) has become more fertile than soil. The combined use of V + NFB increased chlorophyll a (45%), chlorophyll b (50%), total chlorophyll (46%) and carotenoids (39%) compared to the control treatment. The content of total phenol, flavonoids, the percentage of radical inhibition of DPPH, the percentage of relative moisture content and dry yield of the plant led to an increase of 36, 37, 35, 29 and 31%, respectively, in optimal irrigation conditions and 31, 29, 30, 21 and 23%. Comparison of the average soil fertility treatments in different irrigation levels showed that soil fertility application led to a decrease in proline content. Accordingly, the highest amount of proline (31 micrograms of warmer weight) of the control treatment was observed in irrigation conditions after consuming 80% of the usable moisture in the root development depth and without the use of soil fertility treatments. However, the lowest proline levels of 15.61 micromoles per kg of body weight were obtained in irrigated conditions after consuming 40% of the moisture usable in root development depth and fertilizer and vermicompost treatment + nitrogen stabilizing release bacteria (V + NFB). According to the results of variance analysis, different irrigation levels and soil fertility treatments had a significant effect on the amount of malondialdehyde and hydrogen peroxide. According to the results of the comparison of the mean of the data, the delay in irrigation significantly increased the concentration of malondialdehyde. While the use of soil fertility treatments has shown an effective role in reducing the amount of malondialdehyde, the highest and lowest levels of this trait were observed in control treatment and combined treatment of vermicompost and nitrogen-fixing release bacteria (V + NFB), respectively. Combination treatment of vermicompost and nitrogen-fixing release bacteria (V + NFB) reduced the amount of hydrogen peroxide at all three different irrigation levels compared to the control treatment.Soil fertility combined with soil fertility treatments was less than the individual application conditions In moderate stress conditions and 21, 19, 18, 17 and 17% in severe stress conditions in plants inoculated with V + NFB. From the obtained results, it is inferred that the application of the combined system of organic, biological and chemical fertilizers due to the increase of compatible solutions and regulation of antioxidant systems, as an effective solution to soil fertility and increase nutrient uptake, improves environmental stress. Comparison of the average data obtained from the interaction of different levels of irrigation and soil fertility treatments clearly showed that the combined use of fertilizer and vermicompost + nitrogen-fixing release bacteria (V + NFB) and treatment application of vermicompost increased the effect of increasing irrigation at all different levels. The percentage of leaf moisture content showed. The lowest percentage of leaf moisture content (52.45%) in irrigation conditions was obtained after consuming 80% of the moisture that can be used in the root development depth and without the use of soil fertility treatments. A study of the results of this study showed that the combined use of vermicompost and nitrogen-fixing release bacteria (V + NFB) reduces the effects of drought stress. Many of the quantitative and qualitative characteristics of the plant are fragrant.Therefore, the results of this study showed that the use of soil fertilizers by improving plant tolerance in water stress conditions leads to improved plant performance.

کلیدواژه‌ها [English]

  • Antioxidants
  • Vermicompost
  • Water stress
  • Sustainable agriculture
  1. References

    1. Amirnia, R., Ghiyasi, M., Moghaddam, S.S., Rahimi, A., Damalas, C.A. and Heydarzadeh, S. 2019. Nitrogen-fixing soil bacteria plus mycorrhizal fungi improve seed yield and quality traits of Lentil (Lens culinaris Medik). Journal of Soil Science and Plant Nutrition, 4(2):1-11.
    2. Anriquez, A.L., Silberman, J.E., Nuñez, J.A.D., Albanesi, A.S. 2019. Biofertilizers in argentina. Sustainable Agriculture and Environment, 3(1): 25-32.
    3. Arnon, D. I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology
      24 (1):1-15.
    4. Dornald, N. 2005. Official methods of analysis of AOAC (18th Ed), Vol. II. Association of Official Analytical Chemist, Washington DC.
    5. Bates, L.S., Waldren, R.P. and Teare, I.D. 1973. Rapid determination of free proline for water-stress studies. Plant and soil, 39 (1): 205-207.
    6. Blum, A. Drought resistance, water-use efficiency, and yield potential—are they compatible, dissonant, or mutually exclusive?. Australian Journal of Agricultural Research, 56 (11): 1159-1168.
    7. Bowles, T.M., Barrios-Masias, F.H., Carlisle, E.A., Cavagnaro, T.R. and Jackson, L.E. 2016. Effects of arbuscular mycorrhizae on tomato yield, nutrient uptake, water relations, and soil carbon dynamics under deficit irrigation in field conditions. Science of the Total Environment, 56 (2): 1223-1234.
    8. Carrubba, A., Latorre, R., and Matranga, M. 2002. Cultivation trials of some aromatic and medicinal plants in a semiarid mediterranean environment. Proceeding of an International Conference on MAP, Budapest, Hungary, Acta Horticulture, 576 (1): 207-213.
    9. Cattivelli, L., Rizza, F., Badeck, F.W., Mazzucotelli, E., Mastrangelo, A.M., Francia, E., Marè, C., Tondelli, A. and Stanca, A.M. 2008. Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crops Research, 105(1-2):1-14.
    10. Copetta, A., Lingua, G. and Berta, G. 2006. Effects of three AM fungi on growth, distribution of glandular hairs and essential oil production in Ocimum basilicum var. Genovese, Mycorrhiza, 16 (2): 485-494.
    11. Ebrahimzadeh, M.A., Navai, S.F., and Dehpour, A.A. 2011. Antioxidant activity of hydroalcholic extract of ferulagummosa Boiss roots. US National Library of Medicinal National Institutes of Health. 15(6): 658-664.
    12. Fernandez-Bayo, J.D.; Nogales, R.; Romero, E. 2009. Assessment of three vermicomposts as organic amendments used to enhance diuron sorption in soils with low organic carbon content. Eureopean Journal of Soil Science, 12(3): 22-36.
    13. Ghanbarzadeh, Z., Mohsenzadeh, S., Rowshan, V. and Moradshahi, A. 2019. Evaluation of the growth, essential oil composition and antioxidant activity of Dracocephalum moldavica under water deficit stress and symbiosis with Claroideoglomus etunicatum and Micrococcus yunnanensis. Scientia Horticulturae, 256 (1): 22-36.
    14. Guarda, G., Padovan, S., and Delogu, G. 2004. Grain yield, nitrogen-use efficiency and baking quality of old and
      modern Italian bread-wheat cultivars grown at different nitrogen levels. European Journal of Agronomy, 21(2): 181–192.
    15. Hidangmayum, A., Dwivedi, P., Katiyar, D. and Hemantaranjan, A. 2019. Application of chitosan on plant responses with special reference to abiotic stress. Physiology and molecular biology of plants, 25 (2): 313-326.
    16. Horwitz, W. 1984. Official methods of analysis of the association of official analytical chemists. 14th Association of Official Analytical Chemists, Washington DC.
    17. Irigoyen, J. J., Emerich, D. W. and Sanchez-Dias, M. 1992. Water stress induced changes in concentrations of prolin and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiology and Plant, 84 (1): 55-60.
    18. Javan Gholiloo, M., Yarnia, M., Ghorttapeh, A.H., Farahvash, F. and Daneshian, A.M. 2019. Evaluating effects of drought stress and biofertilizer on quantitative and qualitative traits of valerian (valeriana officinalis). Journal of Plant Nutrition, 3 (2): 1-13.
    19. Jia, Z., Tang, M. and Wu, J. 1999. The determination of flavonoid content in mulberry and their scavenging effects on superoxide radicals. Food Chemistry 64 (2): 555-559.
    20. Kalam, S., Das, S.N., Basu, A. and Podile, A.R. 2017. Population densities of indigenous Acidobacteria change in the presence of plant growth promoting rhizobacteria (PGPR) in rhizosphere. Journal of basic microbiology, 57(5):376-385.
    21. Kamalizadeh, M., Bihamta, M. and Zarei, A. 2019. Drought stress and TiO2 nanoparticles affect the composition of different active compounds in the Moldavian dragonhead plant. Acta physiologiae plantarum, 41(2): 21-32.
    22. Khalafallah, A.A., and Abo-Ghalia, H.H. 2008. Effect of arbuscular mycorrhizal fungi on the metabolic products and activity of antioxidant system in wheat plants subjected to short-term water stress, followed by recovery at different growth stages. Journal of Applied Sciences Research 4(5): 559-569.
    23. Kocira, S., Sujak, A., Kocira, A., Wójtowicz, A. and Oniszczuk, A. 2015. Effect of Fylloton application on photosynthetic activity of Moldavian dragonhead (Dracocephalum moldavica). Agriculture and Agricultural Science Procedia, 7 (2): 108-112.
    24. Kocira, S., Sujak, A., Oniszczuk, T., Szparaga, A., Szymanek, M., Karakuła-Juchnowicz, H., Krawczuk, A. and Kupryaniuk, K. 2018. Improvement of the photosynthetic activity of Moldavian dragonhead (Dracocephalum moldavica) through foliar application of a nitrophenolate–based biostimulant. In BIO Web of Conferences, 3 (2): 14-19. 
    25. Ladjal, M., Huc, R., and Ducrey, M. 2005. Drought effects on hydraulic conductivity and xylem vulnerability to embolism in diverse species and provenances of Mediterranean cedars, Tree Physiology, 25 (2): 1109 –1117.
    26. Lal, P., Chhipa, B.R., and Kumar, A. 1993. Salt Affected Soil and Crop Production: A Modern Synthesis. Agro Botanical Publishers, India. 375p.
    27. 27-Lukashe, N.S., Mupambwa, H.A., Green, E. and Mnkeni, P.N.S. 2019. Inoculation of fly ash amended vermicompost with phosphate solubilizing bacteria (Pseudomonas fluorescens) and its influence on vermi-degradation, nutrient release and biological activity. Waste management, 83 (2): 14-22.
    28. 28-Mandal, A., Patra, A. K. Singh, D., Swarup, A. and Ebhin Masto, R. (2007). Effect of long-term application of manure and fertilizer on biological and biochemical activities in soil during crop development stages, Bioresource Technology, 98 (1): 3585-3592.
    29. Manickavelu, A., Nadarajan, N., Ganesh, S.K., Gnanamalar, R.P. and Babu, R.C. 2006. Drought tolerance in rice: morphological and molecular genetic consideration. Plant Growth Regulation, 50 (2): 121-138.
    30. Michalak, A. 2006. Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Polish Journal of Environmental Studies, 15(4): 25-32.
    31. 31-Mohamed, M.F., Thalooth, A.T., Elewa, T.A. and Ahmed, A.G. 2019. Yield and nutrient status of wheat plants (Triticum aestivum) as affected by sludge, compost, and biofertilizers under newly reclaimed soil. Bulletin of the National Research Centre, 43(1): 15-20.
    32. Muller, V., Lankes, C., Zimmermann, B.F., Noga, G., and Hunsche, M. 2013. Centelloside accumulation in leaves of Centella asiatica is determined by resource partitioning between primary and secondary metabolism while influenced by supply levels of either nitrogen, phosphorus or potassium. Journal of Plant Physiology, 17 (13): 1165-1175.
    33. Munne, S., and Alegre, L. 1999. Role of dew on the recovery of water stressed Melissa officinalis (L.). Journal of Plant Physiology, 154 (5): 759-766.
    34. Naghizadeh, M., Kabiri, R., Hatami, A., Oloumi, H., Nasibi, F. and Tahmasei, Z. 2019. Exogenous application of melatonin mitigates the adverse effects of drought stress on morpho-physiological traits and secondary metabolites in Moldavian balm (Dracocephalum moldavica). Physiology and Molecular Biology of Plants, 25 (4), 881-894.
    35. Nguyen, P.M., Kwee, E.M., and Niemeyer, E.D. 2010. Potassium rate alters the antioxidant capacity and phenolic concentration of basil (Ocimum basilicum) leaves. Food Chemistry, 123 (4): 1235-1241.
    36. Pankaj, U., Singh, D.N., Singh, G. and Verma, R.K. 2019. Microbial Inoculants Assisted Growth of Chrysopogon zizanioides Promotes Phytoremediation of Salt Affected Soil. Indian journal of microbiology, 59 (2):137-146.
    37. Pellegrini E, Hoshika Y, Dusart N, Cotrozzi L, Gérard J, Nali C, Vaultier MN, Jolivet Y, Lorenzini G, Paoletti E. 2019. Antioxidative responses of three oak species under ozone and water stress conditions. Science of the Total Environment. 647 (2): 390-402.
    38. Perkin, E. 1982. Analytical methods for atomic absorbtion spectrophotometry.CRC Press.
    39. Porcel R, Ruiz-Lozano JM. 2004. Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. Journal of Experimental Botany, 55 (2): 1743-1750.
    40. Rahimi, A., Siavash Moghaddam, S., Ghiyasi, M., Heydarzadeh, S., Ghazizadeh, K., Popović-Djordjević, J. The influence of chemical, organic and biological fertilizers on agrobiological and antioxidant properties of Syrian cephalaria (Cephalaria syriaca). Agriculture, 9(6): 120-132. 
    41. Rowell, D.L. 1994. Soil Science: Method and Application. Longman Group, Harlow. p.345.