نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی سابق کارشناسی ارشد علوم خاک دانشکده کشاورزی دانشگاه شهید باهنر کرمان،ایران.

2 استادیار گروه علوم خاک دانشکده کشاورزی دانشگاه شهید باهنر کرمان، ایران

3 استاد گروه علوم خاک دانشکده کشاورزی دانشگاه شهید باهنر کرمان، ایران

4 استادیار آزمایشگاه مرجع مشاهدات و مدلسازی سیستم علوم زمین هنان، دانشگاه هنان، کایفن 475004، چین

چکیده

شناسایی رقومی خاک‌ها به عنوان ابزاری برای تأمین اطلاعات مکانی خاک محسوب می‌شود. در سال‌های اخیر استفاده از تکنیک نقشه-برداری رقومی خاک گسترش قابل توجهی داشته ‌است؛ روش‌های نوین نقشه‌برداری و تهیه نقشه‌های رقومی به منظور رفع محدودیت‌های روش‌های سنتی توسط محققین ایجاد و توسعه یافته‌اند. متاسفانه بخش-های زیادی از خاک کشورمان ایران، هنوز نقشه‌برداری نشده یا در مقیاس خیلی کوچک شناسایی شده است. منطقه کوهبنان در استان کرمان یکی از این مناطق است. لذا این مطالعه با هدف نقشه‌برداری رقومی خاک در منطقه کوهبنان کرمان براساس مدل رگرسیون لاجیستیک چندجمله‌ای انجام گردید. طرح نمونه‌برداری به روش هایپرکیوب در منطقه‌ای به مساحت حدود 2000 هکتار اجرا گردید و 70 خاکرخ حفر و تشریح گردید. متغیرهای کمکی شامل اجزای سرزمین، شاخص‌های سنجش از دور، نقشه‌های ژئومورفولوژی و زمین-شناسی به عنوان پارامترهای ورودی مورد استفاده قرار گرفتند. نتایج مطالعات خاکشناسی نشان داد که خاک‌های تشکیل شده تکامل زیادی ندارند و عمدتا در رده‌های اریدی‌سول و انتی‌سول قرار می‌گیرند. نتایج مدل‌سازی نشان داد که اجزای سرزمین یک پارامتر محیطی مؤثر در فرآیند تشکیل و پیش‌بینی کلاس‌های خاک می‌باشند. شاخص خیسی بیشترین اهمیت در تعیین و پیش‌بینی مکانی کلاس‌های خاک را دارا می‌باشد. همچنین، نقشه ژئومورفولوژی، یک ابزار مهم در فرایند نقشه-برداری خاک است که به افزایش دقت پیش‌بینی مدل‌کمک می‌کند. در بین کلاس‌های خاک مورد پیش‌بینی، کلاس هپلوکمبیدز، دقت پایینی را نشان داد، در صورتی که کلاس هپلوسالیدز از دقت بالایی (دقت کلی = 1) برخوردار بود.

کلیدواژه‌ها

عنوان مقاله [English]

Application of multinomial logistic regression model in digital survey of soil classes in Kouhbanan region of Kerman

نویسندگان [English]

  • Maryam Izadi Bidani 1
  • A Jafari 2
  • Mohammad Hadi Farpoor 3
  • Mojtaba Zeraatpisheh 4

1 Former MS student, Department of Soil Science, College of Agriculture, Shahid Bahonar University of Kerman

2 Assistant Professor, Department of Soil Science, College of Agriculture, Shahid Bahonar University of Kerman

3 Professor, Department of Soil Science, College of Agriculture, Shahid Bahonar University of Kerman

4 Assistant Professor, Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, College of Environment and Planning, Henan University, Kaifeng 475004, China

چکیده [English]

Introduction: Soil digital mapping represents a set of mathematical computations to predict the distribution of soil classes in the landscape. . The digital identification of soils as a tool for creating soil spatial data provides ways to address the growing need for high-resolution soil maps. The use of digital soil mapping technique has been expanded considerably; therefore, new methods of mapping and preparing digital maps have been developed by researchers to eliminate the limitations of traditional methods. This approach relies on statistical relationships between measured soil observations and environmental covariates at the sampling locations. Digital soil data is increasing based on new processing tools and various digital data. The present study was conducted with the purpose of digital soil mapping in Kouhbanan region of Kerman based on a Multinomial logistic regression model.
Materials and methods: The study area is located in southeastern Iran, northwest of Kerman city, in Kouhbanan distinct. This study covers a 2000 ha area. In this study, a Latin hypercube sampling design was applied and the sampling was done according to the difference in landforms (geomorphology map), topography (including digital elevation map) and geology. Finally, the geographic locations of 70 profiles were identified. Soil profiles were described according to U.S. Soil Taxonomy (Soil Survey Staff, 2014) and finally, the soil samples were taken from their diagnostic horizons. The collected soil samples were transferred to the laboratory, and some physical and chemical analyzes were performed based on routine standard methods. Environmental data include the parameters derived from the digital elevation model, Landsat satellite images (remote sensing indexes), geology map, geomorphic units (geomorphology map) and legacy soil map of the study area. All environmental variables were derived using ENVI and SAGA software. In this research, a multinomial logistic regression model was used to predict soil classes and the modeling was done in R software using nnet package. It is worth noting that leave-one-out cross validation was used for validation. Estimation of predictive accuracy of soil classes was also done using the overall accuracy index and Kappa coefficient.
Results and discussion: The results showed that the soils of the study area were mainly classified in the Aridisols and Entisols orders. The modeling results showed that the terrain attributes were recognized as the effective auxiliary variables in the prediction process of soil classes. This confirms topographic importance on soil genesis in the studied area. After that, geomorphology map was an important tool in soil mapping that helps to increase predictive accuracy. Among the soil classes, the prediction of Haplocambids was accompanied with low accuracy, while Haplosalids great groups were predicted with high accuracy. The low estimation accuracy of the great group of Haplocambids is probably due to the low sample size of this class of soil in the study area. A good identification of the relationships between the predictor variables and the target variable depends primarily on the size and distribution of the sample in the layers. There were only two examples of Haplocambids in the area. Therefore, low accuracy is expected because the model has failed to establish a relationship between this class with environmental variables and makes it difficult to identify threshold values for classifying soil classes and, consequently, a poorly trained model. It is also possible that low prediction accuracy is the result of the conceptual model being incomplete, since there is no characteristic feature that can help model training and ultimately prediction. Among the soil great groups, the best predictions were obtained for the great group of Haplosalids, which demonstrates high values of user accuracy and reliability. Accurate prediction of the class of Haplosalids is highly correlated with the spatial distribution of indices such as wetness index and NDVI. Kappa index and purity map were calculated 0.45 and 0.65 for digital soil map derived from multinomial logistic regression. In the predicted map, six major groups of Haplosalids, Haplocambids, Haplocalcids, Haplogypsids, Calcigypsids and Torrifluvents were identified. The great groups of Haplocalcids, Haplosalids, and Calcigypsids cover most of the area and the great groups Haplocambids and Haplogypsids occupy lowest of the area. The great group of Haplosalids is located in the north of the region and in the piedmont plain landform. Haplocalcids great groups were most commonly found in alluvial fan landform, while Calcigypsids are located in pediments, alluvial fans, and piedmont plain landforms. Haplocambids and Haplogypsids great groups are located more in the geomorphic surface of the alluvial fan and the piedmont plain, respectively. The parts of the region with the most variations or diversity of soil classes are exactly where the geomorphological map has the most segmentation. Therefore, the presence of different soil classes in the least-differentiated and most similar regions is resulted to an inefficient conceptual model and poor prediction results.
Conclusions: The results showed that topographic parameters were the most important and powerful variable in modeling, and confirms that topography or relief is the most important soil forming factor in the study area. Predictive results of soil classes in Kuhbanan area of Kerman province showed that geomorphological map in the study area is very useful and necessary and also is effective in understanding and communicating between soil and landscape. Using this map as a qualitative auxiliary variable can explain much of the variability of soils in the study area. Careful field observation, satellite imagery consideration, study and interpretation of data obtained from soil profiles indicate that the study area has been evolved by geological, geomorphological, and hydrological processes that lead to the formation of various landforms including rock outcrops, hills, pediment , alluvial fan and plain. For the multinomial logistic regression model in the study area, terrain attributes have the most influence on the prediction of soil classes and soil properties than the remote sensing indices. The strong relationship between soil data and environmental parameters is one of the factors influencing model accuracy. Logistic regression models will have great potential in predicting soil classes if a complete understanding of the study area and proper selection of auxiliary variables are carried out.

کلیدواژه‌ها [English]

  • Kouhbanan region of Kerman
  • soil great group
  • auxiliary variables
  • topographic parameters
  • geomorphology map
  1. References

    1. Abbaszadeh Afsharm F., Ayoubi, S., Jafari, A. 2017. Digital Soil Mapping of Soil Classes using Conventional Soil Maps in the Arid Region Southeastern Iran. Journal of Water and Soil Science, 21(1): 239-253.
    2. Adhikari, K., Hartemink, A.E., Minasny, B., Bou Kheir, R., Greve, M.B., and Greve M.H. Digital mapping of soil organic carbon contents and stocks in denmark. PLoS ONE,9:1-13.
    3. Adhikari, K., Minasny, B. Greve, M.B., and Greve, M.H. 2013. Constructing a soil class map of Denmark based on the FAO Legend Using Digital T Geoderma, 214-215: 101-113.
    4. Artieda, o., Herrero, J., and Drohan, P. J. 2006. Refinement of the Differential Water Loss Method for Gypsum Determination in S Soil Science of America Journal, 70 (6): 1932-1935.
    5. Bagheri Bodaghabadi, M., Martinez-Casasnovas, J.A., Salehi, M.H., Mohammadi, J., Esfandiarpoor Borujeni, I., Toomanian, N., and Gandomkar, A. 2015. Digital soil mapping using artificial neural networks and terrain-related a Pedosphere, 25(4): 580-591.
    6. Banaei, M.H. 2001. Map of resources and pottentialities of Iran soils. Research Institude of Soil and Water, Tehran, Iran.
    7. Barthold, F.K., Wiesmeier, M., Breuer, L., Frede, H.G., Wu, J., and Blank, F.B. 2013. Land use and climate control the spatial distribution of soil types in the grasslands of inner mongolia. Journal of Arid Environments,88: 194–205.
    8. Boehner, J., and Selige, T. 2006. Spatial prediction of soil attributes using analysis and climate regionalization. In: Boehner, J., McCloy, K. R. and Strobl, J. (Ed.): SAGA– Analysis and modelling application, Geottinger Geographische Abhandlungen, 115: 13-28.
    9. Boehner, J., Koethe, R., Conrad, O., Gross, J., Ringeler, A., and Selige, T. 2002. Soil regionalisation by means of terrain analysis and process parameterisation. In: Micheli, E., Nachtergaele, F., Montanarella, l. (Ed.): Soil classification 2001. European Soil Bureau- Research Report No. 7, EUR 20398 EN, Luxembourg. Pp.213-222.
    10. Bouyoucos, G.J. 1962. Hydrometer method improved for making particle size analysis of s Journal of Agronomy, 54: 464-465.
    11. Caniego, F., Ibáñez, J.J., and Martínez, F.S.J. 2007. Rényi dimensions and pedodiversity indices of the earth pedotaxa distribution. Nonlinear Processes in Geophysics. 14: 547-555.
    12. Carnell, R., Carnell, M.R., 2016. Package ‘lhs’. CRAN. https://cran. rproject. org/web/packages/lhs/lhs. pdf.
    13. Debella-Gilo, M., and Etzelmuller., B. 2009. Spatial prediction of soil classes using digital terrain analysis and multinomial logistic regression modeling integrated in GIS: Examples from Vestfold County, Norway. Catena, 77(4): 8-18.
    14. Du, C., Linker, R., and Shaviv, A. 2008. Identification of agricultural soils using mid-infrared photoacoustic spectroscopy. Geoderma, 143(1-2): 85–90.
    15. Fairfield, J., and Leymarie, P. 1991.Drainage networks from grid digital elevation models. Water Resources Research, 27(5): 709-717.
    16. Gallant, J.C., and Dowling, T.I. 2003. A multi-resolution index of valley bottom flatness for mapping depositional areas. Water Resources Research, 39(1): 1347-1360.
    17. Hengl, T., Rossiter, D. G. and Stein, A. 2003. Soil sampling strategies for spatial prediction by correlation with auxiliary maps. Geoderma. 120: 75–93.
    18. Hengl, T., Toomanian, N., Reuter, H. I., and Malakouti, M.J. 2007. Methods to interpolate soil categorical variables from profile observations: lessons from Iran. Geoderma, 140(4):417–427.
    19. A., Finke, P. A., Van de Wauw, J., Ayoubi, S., and. Khademi, H. 2012. Spatial prediction of USDA- great soil groups in the arid Zarand region, Iran: comparing logistic regression approaches to predict diagnostic horizons and soil types. European Journal of Soil Science, 63: 284-298.
    20. Khaleghi, M., Jafari, A., Farpoor, M.H. 2018. Digital Soil Mapping using legacy soil data: Case study of Faryab region of Kerman. Journal of Agricultural Engineering, 41(4): 31-48.
    21. Lagacherie, P., McBratny, A.B. and Volts, M. 2007. Digital soil mapping: An introductory perspective. Developments in soil science 31(Elsevier, Amsterdam).
    22. Lanyon, L.E., and Heald, W.R. 1982. Magnesium, calcium, strontion and barium. In Methods of soil analisis. Chemical and microbiological properties. Agronomy no.9 Part 2. 2nd 247-260. Soil Scince Society of America. Madison, Wisconsin in, U.S.A.
    23. Marchetti, A., Piccini, C., Santucci, S., Chiuchiarelli, I., and Francaviglia, R. 2011. Simulation of soil types in teramo province (Central Italy) with terrain parameters and remote sensing d Catena, 85(3): 267-273.
    24. Markus, E., and Merkli, C. 2007. Weathering, mineralogical evolution and soil organic matter along a Holocene soil toposequence developed on carbonate-rich materials. Geomorphology 97: 675-696.
    25. McBratney, A.B., Odeh, O., Bishop, T.F., Dunbar, M.S., and Shatar, T.M. 2000. An overview of pedometric techniques for use in soil survey. Geoderma. 97(3-4): 293-327.
    26. Minasny, B., and McBratney, A.B. 2006. A conditioned Latin hypercube method for sampling in the presence of ancillary information, Computer and Geosciences, 32: 1378-1388.
    27. Minasny, B., and McBratney, A.B. 2007. Incorporating taxonomic distance into spatial prediction and digital mapping of soil c Geoderma, 142(3-4): 285– 293.
    28. Minasny, B., and McBratney, A.B. 2016. Digital soil mapping: A brief history and some lessons. Geoderma, 264: 301-311.
    29. Moore, I.D., Turner, A.K., Wilson, J.P., Jenson, S.K., and Band, L.E. 1993. GIS and landsurface- subsurface process m In Goodehild, M.F., Parks, B., and Steyaert, L.T. (eds.), Environmental Modeling with GIS. Oxford University Press, Oxford, pp. 196– 230.
    30. Pahlavan Rad,R., Khormali, F., Toomanian, N., Kiani, F., Komaki, Ch.B. 2015. Digital soil mapping using Random Forest model in Golestan province. Journal of Water and Soil Conservation, 21(6): 73-93.
    31. Perry, C.R., and Lautenschlager, L. F. 1984, Functional equivalence of spectral vegetation indices. Remote Sens of Environ. 14(1-3): 169-182.
    32. Rhoades, J.D. 1982. Soluble salts. p. 167-179. In: A. L. Page et al. (ed.) Methods of soil analysis: Part 2: chemical and microbiological p Monograph Number 9 (Second Edition). ASA, Madison, WI.
    33. Richardson, A.J., and Wiegand, C.L. 1977.Distinguishing vegetation from soil background information. Photo Grammetric Engineering and Remote Sensing, 43(12): 1541-1552.
    34. Ripley, B.D. 2007. Pattern recognition and neural networks, Cambridge University Press.
    35. Scull, P., Franklin, J., Chadwick, O. A., and McArthur, D. 2003. Predictive soil mapping: A Progressin. Physical Geography, 27: 171-197.
    36. Subburayalu, S.K., and Slater, B.K. 2013. Soil series mapping by knowledge discovery from an ohio county soil m Soil Science Society of America Journal, 77:1254–1268.
    37. Sumner, M.E., and Miller, W.P. 1996. Cation exchange capacity and exchange c In: Bartels J.M. and Bigham J.M. (eds.) Methods of soil analysis. Part 3. Chemical and microbiological properties. American Society of Agronomy. Madison. Wisconsin. Pp: 1201-1231.
    38. Taghizadeh-Mehrjardi, R., Nabiollahi, K., Minasny, B., and Triantafilis, J. 2015. Comparing data mining classifiers to predict spatial distribution of USDA-family soil groups in Baneh region, Iran. Geoderma. 253–254: 67–77.
    39. Taghizadeh-Mehrjardi, R., Sarmadian, F., Omid, M., Toomanian, N., Rousta, M.J., Rahimian, M.H. 2015. Digital mapping of soil classes using different data mining techniques in Ardakan region, Yazd province. Journal of Agricultural Engineering, 37(2): 101-115.
    40. Tarboton, D. G. 1997. A New method for the determination of flow directions and upslope areas in grid digital elevation models, Water Research, 33(2): 309-319.
    41. Tuker, C. J. 1979. Red and photographic infrared liner combinations for monitoring vegetation remote sensing of environment, 8(2): 127-150.
    42. S. Salinity Laboratory Staff. 1954. Alkaline-earth carbonates by gravimetric loss of carbon dioxide. p. 105. In: L. A. Richards (ed.) Diagnosis and improvement of saline and alkali soils. USDA Agriclture. Hend book. 60.U.S.
    43. USDA-NRCS. 2011. JAVA Newhall Simulation Model – Update to a traditional soil climate simulation model. Abstract Soil Sci. Soc. Am. Int. Annual Meeting. San Antonio, TX.
    44. 2014. Key᾿s to soil taxonomy, 10th (Eds). United state department of agriculture, natural resources conservation service.
    45. Walkley, A., and Black, I.A. 1934. An examination of degtjareff method for determining soil organic matter and a proposed modification of the chromic acid in soil analysis.1.Experimental. Soil Science Society of America Journal, 79: 459-465.
    46. Wang, D., and Laffan, S. W. 2009. Characterization of valleys from DEMs. Proceedings of 18th World IMACS/MODSIM Congress, Cairns, Australia 13-17 July. http://mssanz.org.au/modsim09.
    47. Yang, l., Jiao, Y., Fahmy, S., Zhu, A-X., Hann, S., Burt, J. E., and Qi, F. 2011. Updating conventional soil maps through digital soil m Soil Science Society of America Journal Abstract- Pedology,75(3): 1044-1053.
    48. Zeraatpisheh, M., Ayoubi S., Jafari A., Finke P. 2017. Comparing the efficiency of digital and conventional soil mapping to predict soil types in a semi-arid region in Iran. Geomorphology 285, 186-204.
    49. Zeraatpisheh, M., Ayoubi, S., Brungard, C.W., Finke, P., 2019. Disaggregating and updating a legacy soil map using DSMART, fuzzy c-means and k-means clustering algorithms in Central Iran. Geoderma 340, 249-258.
    50. Zeraatpisheh, M., Jafari, A., Bagheri Boadaghabadi, M., Ayoubi, S., Taghizadeh Mehrjardi, R., Toomanian, N., Kerry, R., Xu, M. 2020. Conventional and digital soil mapping in Iran: Past, present, and future. CATENA, 188: 104424.
    51. Zevenbergen, L.W., and Thorne, C.R. 1987. Quantitative analysis of land surface topography, Earth Surface Processes and Landforms, 12(1): 47-56.