نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد مهندسی مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، ایران

2 استادیار گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، ایران

3 استاد بازنشسته گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، ایران

چکیده

در حال حاضر زیست‌توده به عنوان منبعی اقتصادی و تجدید پذیر مورد توجه بسیاری از محققان قرار گرفته است. تولید زغال زیستی از منابع زیست‌توده می‌تواند علاوه بر تولید انرژی از این منابع، از اثرات مخرب زیست محیطی ناشی از استفاده بی رویه سوخت‌های فسیلی نیز بکاهد. در این تحقیق به بررسی فرآیند پیرولیز در حضور آب در شرایط بحرانی، دما و فشارهای بالا که به اصطلاح کربونیزه کردن هیدروترمال می‌نامند، جهت تولید زغال زیستی از باگاس نیشکر که از ضایعات نیشکر می‌باشد، پرداخته شد. عوامل مورد مطالعه در این تحقیق شامل زمان ماند مواد درون رآکتور (30، 75 و 120 دقیقه)، نسبت جرمی باگاس به آب (15/0 ، 20/0 و 30/0) و فشار درون رآکتور (10، 5/12 و 15 بار) بود. در این تحقیق از روش باکس بنکن به منظور طراحی آزمایش‌ها استفاده شد و همچنین جهت یافتن شرایط عملکردی رآکتور از روش سطح پاسخ استفاده گردید. بر اساس نتایج بدست آمده، میزان نسبت جرمی باگاس به آب معادل 15/0، زمان ماند 38 دقیقه و فشار11 بار به عنوان نقطه بهینه عملکردی سامانه پیرولیز سریع انتخاب شدند. برای این نقطه بهینه، میزان ارزش حرارتی بالای نمونه‌ها معادل Mj/kg 21 و میزان انرژی مصرفی سامانه برابر kwh 09/0 به دست آمد.

کلیدواژه‌ها

عنوان مقاله [English]

Optimization of sugarcane bagasse fast pyrolysis conditions using response surface method

نویسندگان [English]

  • N Norouzi 1
  • shaban ghavami jolandan 2
  • M. J Sheikh Davoodi 3
  • S.M. Safieddin Ardabili 2

1 Master of Science, Department of Biosystems Engineering, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Iran.

2 Assistant professor, Department of Biosystems Engineering, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Iran.

3 Professor, Department of Biosystems Engineering, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Iran.

چکیده [English]

Introduction
Today, with advances in all sciences, we must always look for a way to make the best use of plant residues and turn them into valuable products. A consequence of improving family life standards and consistent industrial development is a higher demand for energy usage. Nowadays, agricultural residues are produced in huge quantities and could be considered as a promising source for renewable energy generation. Bagasse is one of the major sources of sugarcane production. The production of valuable products from Bagas, in addition to having economic benefits, can reduce the environmental damage caused by burning them. In recent years, there has been an increasing trend in the utilization of sugarcane bagasse as a major by-product of the sugarcane industry. Another very valuable substance produced from sugarcane bagasse, which we will discuss in this study, is bio compressed coal. Valorization of sugarcane bagasse to engineered biochar using hydrothermal carbonization (HTC) presents a perspective source to substitute conventional fossil fuels. HTC process offers the benefits of converting the sugarcane bagasse into biochar and bio-oil. In this process, biomass is usually conducted in the temperature range of 180–250 ◦C. HTC technique is promoted as one way of reducing carbon dioxide (CO) emissions, which mostly generated through open burning of crop residues. Besides the utilization for power/heat generation for sugarcane industries, Bagasse may find other potential applications, for instance: electricity generation, biogas production, livestock feed/compost production, and also bioethanol production. The unique features of biochar generated through HTC process are its portability, high volumetric energy density, hydrophobicity, and wear ability.

Materials and Methods
In this research, sugarcane waste was obtained from Hakim Farabi Sugarcane Cultivation and Industry Company in Ahvaz. The hydrothermal carbonization process was performed in a batch reactor at Shahid Chamran University of Ahvaz. The parameters studied in this study include the retention time of the material inside the reactor (30, 75, and 120 minutes), bagasse mass to water ratio (0.15, 0.20, and 0.30) and the pressure inside the reactor (10, 12.5 And 15 bar). In order to measure the pressure, a Nuova FiMa barometer was used, which was able to measure the pressure values up to 25 bar. A temperature control system model HANYoung ED6 was used, which was equipped with a ceramic heater with a diameter of 230 mm and a height of 230 mm to provide heat for the process. The PARR1266 calorie bomb device was employed to measure the calorific value of the samples. The moisture content of the samples was also measured using ASTM-2010a standard. In this experimental work, the response surface method was employed to investigate the effect of input parameters (i.e., pressure, residence time, and water-to-biomass) on the response parameter (i.e., HHV and energy consumption). Design Expert ver.10 software was used to predict the corresponding models. The obtained models provided a good relationship between the independent/dependent parameters.

Results and Discussion
The HTC process has been analyzed using a Response Surface Method to derive predicted models for the HHV and energy parameters. The results obtained showed that all models provided could successfully predict the HTC process. According to the results, the models developed were statistically significant at the level of 1%. The multi-regression models between the input/response variables were obtained as second-order quadratic equations. The F-value for the residence time, and water-to- bagasse, and pressure were 2417, 286, and 1185, respectively. The value of F-value of each derived model indicates the significance of the studied parameters. The parameters of water-to-bagasse and pressure had a more significant effect compared to the residence time factor. The R-square value for this study was achieved as 0.0996, indicating that the proposed model was able to evaluate the experimental data thoroughly. A multi-objective optimization technique was used to achieve an optimal HTC process condition with the maximum possible amount of desirability value.

Conclusion
The optimum amount of water-to-bagasse, pressure, and residence time was calculated using the response surface techniques. A pressure of 11 bar, the residence time of 38 min, and water-to-bagasse of 0.15 were found to be optimal values. The findings of this study indicate that at optimal input variables, the value of calorific value and used energy was 21 Mj/kg and 0.09 kWh, respectively.

Keywords:
Hydrothermal carbonization, Sugarcane bagasse, Response surface method, Optimization

کلیدواژه‌ها [English]

  • Hydrothermal carbonization
  • Sugarcane bagasse
  • Response surface method
  • Optimization
  1. References

    1. Agrafioti, E., Bouras, G., Kalderis, D., and Diamadopoulos, E. 2013. Biochar Production by Sewage Sludge Pyrolysis. Journal of Analytical and Applied Pyrolysis, 101: 72–78.
    2. Ahmed, I., and Gupta, A.K. 2009. Syngas Yield during Pyrolysis and Steam Gasification of Paper. Applied Energy, 86(9): 1813–1821.
    3. Ardebili, S.M.S., Solmaz, H., and Mostafaei, M. 2019. Optimization of Fusel Oil–Gasoline Blend Ratio to Enhance the Performance and Reduce Emissions. Applied Thermal Engineering, 148: 1334–1345.
    4. Ashraf, A., Sattar, H., and Munir, S. 2019. Thermal Decomposition Study and Pyrolysis Kinetics of Coal and Agricultural Residues under Non-Isothermal Conditions. Fuel, 235: 504–514.
    5. Baul, T.K., Alam, A., Strandman, H., and Kilpeläinen, A. 2017. Net Climate Impacts and Economic Profitability of Forest Biomass Production and Utilization in Fossil Fuel and Fossil-Based Material Substitution under Alternative Forest Management. Biomass and Bioenergy, 98: 291–305.
    6. Biswas, B., Pandey, N., Bisht, Y., Singh, R., Kumar, J., and Bhaskar, T. 2017. Pyrolysis of Agricultural Biomass Residues: Comparative Study of Corn Cob, Wheat Straw, Rice Straw and Rice Husk. Bioresource Technology, 237: 57–63.
    7. Chiodo, V., Zafarana, G., Maisano, S., Freni, S., and Urbani, F. 2016. Pyrolysis of Different Biomass: Direct Comparison among Posidonia Oceanica, Lacustrine Alga and White-Pine. Fuel, 164: 220–227.
    8. Dabros, T.M.H., Stummann, M.Z., Høj, M., Jensen, P.A., Grunwaldt, J.D., and Gabrielsen, J. 2018. Transportation Fuels from Biomass Fast Pyrolysis, Catalytic Hydrodeoxygenation and Catalytic Fast Hydropyrolysis. Progress in Energy and Combustion Science, 68: 268–309.
    9. Duku, M.H., Gu, S., and Hagan, E.B. 2011. Biochar Production Potential in Ghana—a Review. Renewable and Sustainable Energy Reviews, 15(8): 3539–3551.
    10. Gao, Z., Li, N., Yin, S., and Yi, W. 2019. Pyrolysis Behavior of Cellulose in a Fixed Bed Reactor: Residue Evolution and Effects of Parameters on Products Distribution and Bio-Oil Composition. Energy, 175: 1067–1074.
    11. Gómez, N., Banks, S.W., Nowakowski, D.J., Rosas, J.G., Cara, J., and Sánchez M.E. 2018. Effect of Temperature on Product Performance of a High Ash Biomass during Fast Pyrolysis and Its Bio-Oil Storage Evaluation. Fuel Processing Technology, 172: 97–105.
    12. Hoekman, S.K., Broch, A., Robbins, C., Zielinska, B., and Felix, L. 2013. Hydrothermal Carbonization (HTC) of Selected Woody and Herbaceous Biomass Feedstocks. Biomass Conversion and Biorefinery, 3(2): 113–126.
    13. Hu, S., Jess, A., and Xu, M. 2007. Kinetic Study of Chinese Biomass Slow Pyrolysis: Comparison of Different Kinetic Models. Fuel, 86(17–18): 2778–2788.
    14. Kambo, H., and Dutta, A. 2015. A Comparative Review of Biochar and Hydrochar in Terms of Production, Physico-Chemical Properties and Applications. Renewable and Sustainable Energy Reviews, 45: 359–378.
    15. Lehto, J., Oasmaa, A., Solantausta, Y., Kytö, M., and Chiaramonti, D. 2014. Review of Fuel Oil Quality and Combustion of Fast Pyrolysis Bio-Oils from Lignocellulosic Biomass. Applied Energy, 116: 178–190.
    16. Meyer, P.A., Snowden-Swan, L.J., Jones, S.B., Rappe, K.G., and Hartley, D.S. 2020. The Effect of Feedstock Composition on Fast Pyrolysis and Upgrading to Transportation Fuels: Techno-Economic Analysis and Greenhouse Gas Life Cycle Analysis. Fuel, 259: 116218.
    17. Nizamuddin, S., Baloch, H.A., Griffin, G.J., Mubarak, N.M., Bhutto, A.W., and Abro, R. 2017. An Overview of Effect of Process Parameters on Hydrothermal Carbonization of Biomass. Renewable and Sustainable Energy Reviews, 73: 1289–1299.
    18. Ouasfi, N., Bouzekri, S., Zbair, M., Ahsaine, H.A., Bakkas, S., and Bensitel M. 2019. Carbonaceous Material Prepared by Ultrasonic Assisted Pyrolysis from Algae (Bifurcaria Bifurcata): Response Surface Modeling of Aspirin Removal. Surfaces and Interfaces, 14: 61–71.
    19. Pattiya, A., and Suttibak S. 2012. Production of Bio-Oil via Fast Pyrolysis of Agricultural Residues from Cassava Plantations in a Fluidised-Bed Reactor with a Hot Vapour Filtration Unit. Journal of Analytical and Applied Pyrolysis, 95: 227–235.
    20. Perkins, G., Bhaskar, T., and Konarova, M. 2018. Process Development Status of Fast Pyrolysis Technologies for the Manufacture of Renewable Transport Fuels from Biomass. Renewable and Sustainable Energy Reviews, 90: 292–315.
    21. Pour, A., Ardebili, S.M.S., and Sheikhdavoodi, M.J. 2018. Multi-Objective Optimization of Diesel Engine Performance and Emissions Fueled with Diesel-Biodiesel-Fusel Oil Blends Using Response Surface Method. Environmental Science and Pollution Research, 25(35): 35429–35439.
    22. Román, S., Nabais, J.M.V., Laginhas, C., Ledesma, B., and González, J.F. 2012. Hydrothermal Carbonization as an Effective Way of Densifying the Energy Content of Biomass. Fuel Processing Technology, 103: 78–83.
    23. Sahoo, B., Sahoo, N., and Saha, U. 2012. Effect of H2: CO Ratio in Syngas on the Performance of a Dual Fuel Diesel Engine Operation. Applied Thermal Engineering, 49: 139–146.
    24. Sakthivel, R., Ramesh, K., Marshal, S.J., and Sadasivuni, K. 2019. Prediction of Performance and Emission Characteristics of Diesel Engine Fuelled with Waste Biomass Pyrolysis Oil Using Response Surface Methodology. Renewable Energy, 136: 91–103.
    25. Sermyagina, E., Saari, J., Kaikko, J., and Vakkilainen, E. 2015. Hydrothermal Carbonization of Coniferous Biomass: Effect of Process Parameters on Mass and Energy Yields. Journal of Analytical and Applied Pyrolysis, 113: 551–556.
    26. Sindhu, R., Binod, P., and Pandey, A. 2016. Biological Pretreatment of Lignocellulosic Biomass–An Overview. Bioresource Technology, 199: 76–82.
    27. Sutton, D., Kelleher, B., and Ross, J.R.H. 2001. Review of Literature on Catalysts for Biomass Gasification. Fuel Processing Technology, 73(3): 155–173.
    28. Xiao, L-P., Shi, Z-J., Xu, F., Sun, R-C. 2012. Hydrothermal Carbonization of Lignocellulosic Biomass. Bioresource Technology, 118: 619–623.
    29. Yaman, S. 2004. Pyrolysis of Biomass to Produce Fuels and Chemical Feedstocks. Energy Conversion and Management, 45(5): 651–671.
    30. Yanik, J., Kornmayer, C., Saglam, M., and Yüksel M. 2007. Fast Pyrolysis of Agricultural Wastes: Characterization of Pyrolysis Products. Fuel Processing Technology, 88(10): 942–947.
    31. Zanzi, R., Sjöström, K., and Björnbom, E. 2002. Rapid Pyrolysis of Agricultural Residues at High Temperature. Biomass and Bioenergy, 23(5): 357–366.
    32. Zhang, Q., Chang, J., and Wang, T.X.Y. 2007. Review of Biomass Pyrolysis Oil Properties and Upgrading Research. Energy Conversion and Management, 48(1): 87–92.