نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه لرستان، خرم آباد، ایران.

2 دانشیار گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه لرستان، خرم آباد، ایران.

3 دانشیار گروه علوم و مهندسی خاک دانشگاه تربیت مدرس

چکیده

پژوهش حاضر به منظور تعیین شاخص کیفیت خاک در بخشی از اراضی جنوب غربی استان خوزستان انجام شد. در این پژوهش به روش سیستماتیک 180 نمونه خاک انتخاب و در هر نمونه 22 پارامتر تعیین گردید. با بهره‌گیری از روش آماری تجزیه مولفه‌های اصلی (PCA )، از بین تمام ویژگی‌های موثر بر کیفیت خاک (TDS )، پنج ویژگی ECe، غلظت سدیم، کلر، سولفات و SAR، به عنوان مهمترین ویژگی‌های موثر بر کیفیت خاک (MDS ) تعیین شدند. برای تعیین کیفیت خاک از دو مدل شاخص تجمعی کیفیت خاک (IQI ) و شاخص کیفیت خاک نمرو (NQI )، در دو مجموعه MDS و TDS، استفاده شد. نتایج نشان داد که بطورکلی اراضی منطقه از نظر شاخص‌های کیفیت خاک و روش‌های ارزیابی تناسب اراضی، در سطوح مختلفی قرار داشتند، بطوریکه اراضی کشت و صنعت حداکثر کیفیت و اراضی بایر حداقل کیفیت را نشان دادند. ضریب کاپا محاسبه شده بین شاخص کیفیت خاک تجمعی (IQITDS) و روش‌های ریشه دوم و حداکثر محدودیت به ترتیب 83/0 و 37/0 می‌باشد. که بیانگر سطح بالا و متوسطی از هماهنگی بین داده‌های بدست آمده از روشهای مختلف مورد آزمون می‌باشد. بین نتایج بدست آمده از IQITDS و IQIMDS (43/88 % R2=) و همچنین بین NQITDS و NQIMDS (59/80 % R2=) همبستگی معنی‌داری وجود دارد. این امر نشان می‌دهد که بخوبی می‌توان از مجموعه MDS تهیه شده به نمایندگی از مجموعه TDS استفاده کرد. بنابراین به منظور کاهش زمان و هزینه اجرای طرح‌های مشابه می‌توان بجای TDS از MDS استفاده کرد

کلیدواژه‌ها

عنوان مقاله [English]

Investigation of parameters affecting soil quality under saline and semi-saline conditions (case study of south and southwest of Khuzestan province)

نویسندگان [English]

  • Alireza Zahirnia 1
  • H. Matinfar 2
  • Hossinali Bahrami 3

1 PhD. Student of soil science. Agriculture Faculty. Lorestan University

2 Associate Professor of soil science, Agriculture Faculty, Lorestan University

3 Associate Professor of soil science, Agriculture Faculty,Tarbiat Modares University

چکیده [English]

Low rainfall, lack of irrigation water of good quality, high water level and high annual evaporation in the southwestern region of Khuzestan, has led to the emergence of saline soils. Various environmental factors, such as low production of soil organic matter, high salt content, high concentration of sodium ions, high pH and quality and depth of groundwater, have significant effects on the qualitative indicators of saline soils in arid and semi-arid regions. Soil quality indicates the ability of the soil to provide biological services to living organisms. These services include food production, water treatment, pollution absorption, carbon dioxide absorption, and the production of a variety of medicinal and industrial plants. Soil quality is an important indicator of agricultural and environmental sustainability and is used to assess soil quality. Each soil quality index must have biological characteristics, be sensitive to environmental and managerial changes, and be effective in measuring measurable and quantitative processing. The present study was conducted to determine the soil quality index in a part of the southwestern lands of Khuzestan province with three land use of agriculture and industry, traditional agriculture and barren lands in a part of the southwestern region of Khuzestan province. In this study, using systematic networking method as well as the characteristics of the study area, a total of 180 soil samples were selected and 22 physical, chemical and biological parameters were determined in each sample. The parameters studied in this study were: electrical conductivity, pH, ions such as sodium, calcium, magnesium, chlorine, bicarbonate, sulfate, SAR, CEC, exchangeable potassium, ozone-absorbable phosphorus, percentage of organic matter, activated carbon, Percentage of clay, silt and sand, average soil diameter, water permeability coefficient in saturated state, specific apparent weight and surface soil hardness. After the laboratory results were determined, using statistical method of factor analysis (FA) and principal component analysis (PCA) in SPSS statistical software, among all the characteristics affecting soil quality (TDS), five characteristics of electrical conductivity, sodium concentration, Chlorine, sulfate, and SAR were identified as the most important characteristics affecting soil quality (MDS). The selection of these factors as MDS indicates the high impact of soluble salts and the low depth of ground water on soil quality indicators of the study area, so that the accumulation of salts on the surface and depth of soil, mainly affects soil quality. To evaluate the lands, two models of cumulative soil quality index (IQI) and Nemro quality index (NQI) were used in two sets of MDS and TDS. Then, in order to compare the performance of soil quality index methods, common methods of secondary root and maximum limitation were used. The results showed that in general, the lands of the region were at different levels in terms of soil quality indicators and land suitability assessment methods, so that the lands of cultivation and industry showed maximum quality, lands under traditional cultivation with medium quality and barren lands showed minimum quality. The Kappa coefficient calculated between the Cumulative Soil Quality Index (IQITDS) and the second and maximum rootstock methods was 0.83 and 0.37, respectively, indicating a high and moderate level of coordination between the data obtained from the various methods tested. The calculated correlation between the results obtained from IQITDS and IQIMDS is equal to 88.43% and also between the results of NQITDS and NQIMDS is equal to 80.59%, which are statistically significant. This suggests that a well-prepared MDS set can be used to represent the TDS set. Therefore, MDS can be used instead of TDS to reduce the time and cost of implementing similar research projects. The results of this study show that soil leaching and leaching of salts from the surface and depth of soil profiles, especially in barren lands and under traditional agriculture has been observed and this is the main cause of differences between these lands and lands under agricultural management and industry. In cultivation and industrial lands, due to leveling, drainage and leaching, additional salts have been washed from the soil profile as much as possible and the conditions for plant growth have been provided. It seems continuity of agricultural and industrial land management, especially in the field of adding low-consumption elements, organic matter and improving physical properties, should be done in such a way that soil quality indicators are closer to the optimal range.

کلیدواژه‌ها [English]

  • additive Soil quality index
  • Nemro soil quality index
  • pricipal component
  • maximum limitation
  • land suitability
  1.  

    References

    1. Andrews, S. S., Mitchell, J. P., Mancinelli, R., Karlen, D. L., Hartz, T. K., Horwath, W. R., and Munk, D. S. 2002. On-farm assessment of soil quality in California's central valley. Agronomy Journal, 94(1), 12-23.
    2. Aparicio, V., Costa, J. L. 2007. Soil quality indicators under continuous cropping systems in the Argentinean Pampas. Soil and Tillage Research, 96(1-2), 155-165.
    3. Arshad, M. A., Martin, S. 2002. Identifying critical limits for soil quality indicators in agro-ecosystems. Agriculture, ecosystems & environment, 88(2), 153-160.
    4. Cambardella, C., Gajda, A., Doran, J., Wienhold, B., Kettler, T., and Lal, R. 2001. Estimation of particulate and total organic matter by weight loss-on-ignition. Assessment methods for soil carbon, 349-359.
    5. CASTRO FILHO, C. d., Muzilli, O., and Podanoschi, A. 1998. Estabilidade dos agregados e sua relação com o teor de carbono orgânico num Latossolo Roxo distrófico, em função de sistemas de plantio, rotações de culturas e métodos de preparo das amostras. Revista Brasileira de Ciência do Solo, 22(3), 527-538.
    6. Celik, I. 2005. Land-use effects on organic matter and physical properties of soil in a southern Mediterranean highland of Turkey. Soil and Tillage Research, 83(2), 270-277.
    7. Davari, M., Gholami, L., Nabiollahi, K., Homaee, M., and Joneidi Jafari, H. Deforestation and cultivation of sparse forest impacts on soil quality (case study: West Iran, Baneh). Soil & Tillage Research. 198, 104504.
    8. Diodato, N., Ceccarelli, M. 2004. Multivariate indicator Kriging approach using a GIS to classify soil degradation for Mediterranean agricultural lands. Ecological Indicators 4(3): 177-187.
    9. Dobermann, A., Oberthür, T. 1997. Fuzzy mapping of soil fertility—a case study on irrigated riceland in the Philippines. Geoderma 77(2-4): 317-339.
    10. Doran, J. W., Parkin, T. B. 1994. Defining and assessing soil quality. Defining soil quality for a sustainable environment 35: 1-21.
    11. Dumanski, J. 2000. Land Quality Indicators: Research plan Agric. Eco and Environ.
    12. Dumanski, J., Pieri, C. 2000. Land quality indicators: research plan. Agriculture, ecosystems & environment, 81(2), 93-102.
    13. Gee, G. W., Bauder, J., and Klute, A. 1986. Methods of soil analysis, part 1: Physical and mineralogical methods. Soil Science Society of America Book Series. American Society of Agronomy, Inc. and Soil Science Society of America, Inc. Madison, Wisconsin, 404-410.
    14. Gee, G. W., Bauder, J. W. 1986. Particle-size analysis 1. Methods of soil analysis: Part 1—Physical and mineralogical methods (methods of soil vol. 1), 383-411.
    15. Govaerts, B., Sayre, K. D., and Deckers, J. 2006. A minimum data set for soil quality assessment of wheat and maize cropping in the highlands of Mexico. Soil and Tillage Research, 87(2), 163-174.
    16. Gugino, B. K., Abawi, G. S., Idowu, O. J., Schindelbeck, R. R., Smith, L. L., Thies, J. E., and Van Es, H. M. 2009. Cornell soil health assessment training manual: Cornell University College of Agriculture and Life Sciences.
    17. Han, W., Wu, Q. 1994. A primary approach on the quantitative assessment of soil quality. Chin. J. Soil Sci 25: 245-247.
    18. Herrick, J. E., Brown, J. R., Tugel, A. J., Shaver, P. L., and Havstad, K. M. 2002. Application of soil quality to monitoring and management. Agronomy Journal, 94(1), 3-11.
    19. Islam, K. R., Weil, R. 2000. Soil quality indicator properties in mid-Atlantic soils as influenced by conservation management. Journal of Soil and Water Conservation, 55(1), 69-78.
    20. Karlen, D., Gardner, J., and Rosek, M. 1998. A soil quality framework for evaluating the impact of CRP. Journal of production agriculture, 11(1), 56-60.
    21. Klingebiel, A. A., Montgomery, P. H. 1961. Land-capability classification, Soil Conservation Service, US Department of Agriculture.
    22. McBratney, A. B., Odeh, I. O. 1997. Application of fuzzy sets in soil science: fuzzy logic, fuzzy measurements and fuzzy decisions. Geoderma 77(2-4): 85-113.
    23. Moradi, S., Nabiollahi, K., and Hosseini, S. T. 2018. Assessing the effect of forest degradation and slope position on soil quality index. Journal of Agricultural Engineering. 41(4), 113-129. (in Persian with English abstract)
    24. Nabiollahi, K., Golmohamadi, F., Taghizadeh-Mehrjardi, R., Kerry, R., and Davari, M. 2018. Assessing the effects of slope gradient and land use change on soil quality degradation through digital mapping of soil quality indices and soil loss rate. Geoderma 318, 16–28.
    25. Nabiollahi, Sh., Taghizadeh-Mehrjardi, Sh., Moradian, R., and Kerry, R. 2017. Assessment of soil quality indices for salt-affected agricultural land in Kurdistan Province, Iran. Ecological Indicators. 83, 482–494.
    26. Nabiollahi, K., Taghizadeh-Mehrjardi, R., and Eskandari, S. 2018. Assessing and monitoring the soil quality of forested and agricultural areas using soil-quality indices and digital soil-mapping in a semi-arid environment. Archives of Agronomy and Soil Science. 5, 696–707.
    27. Nelson, P. N., Barzegar, A. R., and Oades, J. M. 1997. Sodicity and clay type: influence on decomposition of added organic matter. Soil science society of America journal, 61(4), 1052-1057.
    28. Page, A., Miller, R., and Keeney, D. 1982. Methods of soil analysis, part 2. Chemical and microbiological properties.
    29. Qi, Y., Darilek, J. L., Huang, B., Zhao, Y., Sun, W., and Gu, Z. 2009. Evaluating soil quality indices in an agricultural region of Jiangsu Province, China. Geoderma, 149(3-4), 325-334.
    30. Qin, M. Z., Zhao, J. 2000. Strategies for sustainable use and characteristics of soil quality changes in urban-rural marginal area." ACTA GEOGRAPHICA SINICA-CHINESE EDITION- 55(5): 545-554.
    31. Rahmanipour, F., Marzaioli, R., Bahrami, H., Fereidouni, Z., and Rahimi Bandarabadi, S. 2014. Assessment of soil quality indices in agricultural lands of Qazvin Province, Iran. Ecological Indicators 40: 19-26.
    32. Ramazani, F., Jafari, S., Salavati, A., and Khalili Moghaddam, B. 2016. Study the soil quality changes indicators using Nemoro and Integrated quality index models in some Khuzestan's soils. Journal water and soil. Vol 29. No. 6. (in Persian with English abstract)
    33. Reynolds, W., Drury, C., Tan, C., Fox, C., and Yang, X. 2009. Use of indicators and pore volume-function characteristics to quantify soil physical quality. Geoderma, 152(3-4), 252-263.
    34. Rezaei, S., Gilkes, R., Andrews, S., and Arzani, H. 2005. Soil quality assessment in semiarid rangeland in Iran. Soil use and management, 21(4), 402-409.
    35. Romero-Aranda, R., Soria, T., and Cuartero, J. 2001. Tomato plant-water uptake and plant-water relationships under saline growth conditions. Plant science, 160(2), 265-272.
    36. Shahab, H., Emami, H., and Haghnia, G. 2018. Effects of Gully Erosion on Soil Quality Indices in Northwestern Iran. Journal of Agricultural Science and Technology, 20(6), 1317-1329. (in Persian with English abstract)
    37. Shukla, M., Lal, R., and Ebinger, M. 2006. Determining soil quality indicators by factor analysis. Soil and Tillage Research, 87(2), 194-204.
    38. Singh, M., Khera, K. 2009. Physical indicators of soil quality in relation to soil erodibility under different land uses. Arid Land Research and Management, 23(2), 152-167.
    39. Sun, B., Zhou, S., and Zhao, Q. 2003. Evaluation of spatial and temporal changes of soil quality based on geostatistical analysis in the hill region of subtropical China. Geoderma, 115(1-2), 85-99.
    40. . Supriyadi, S., Hartati, S., and Machfiroh, N. 2016. Soil Quality Index in the Upstream of Bengawan Solo River Basin According to the Soil Function in Nutrient Cycling Based on Soybean Production in Agroforestry. AGRIVITA, Journal of Agricultural Science, 38(1), 55-63.
    41. Sys, C., Van Ranst, E., and Debaveye, J. 1991. Land evaluation part I, II & III 1993. General Administration for Development Cooperation, Brussels.
    42. . Tesfahunegn, G. B. 2016. Soil quality indicators response to land use and soil management systems in northern Ethiopia's catchment. Land Degradation & Development, 27(2), 438-448.
    43. van der Ploeg, R. R., Böhm, W., and Kirkham, M. B. 1999. On the origin of the theory of mineral nutrition of plants and the law of the minimum. Soil science society of America journal, 63(5), 1055-1062.
    44. Walkley, A., Black, I. A. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29-38.
    45. Wang, X., Gong, Z. 1998. Assessment and analysis of soil quality changes after eleven years of reclamation in subtropical China. Geoderma, 81(3-4), 339-355.
    46. Zahirnia, A. R., Matinfar, H. R. 2019. Determination of the Land Suitability of Sugarcane Fields Based on Soil Quality Index Using a Geographic Information System. Journal of Water and Soil Science, 23(2), 173-188. doi:10.29252/jstnar.23.2.173. (in Persian with English abstract)
    47. Zeraatpisheh, M., Bakhshandeh, E., Hosseini, and Alavi, S. M. 2020. Assessing the effects of deforestation and intensive agriculture on the soil quality through digital soil mapping. Geoderma. 363, 114139.
    48. Zornoza, R., Acosta, J., Bastida, F., Domínguez, S., Toledo, D., and Faz, A. 2015. Identification of sensitive indicators to assess the interrelationship between soil quality, management practices and human health. Soil, 1(1), 173.