نوع مقاله : مقاله پژوهشی
نویسندگان
1 استادیار گروه ماشین های کشاورزی، دانشکده کشاورزی سنقر، دانشگاه رازی، کرمانشاه، ایران
2 دانش آموخته کارشناسی ارشد مهندسی علوم و صنایع غذایی، دانشکده کشاورزی و منابع طبیعی، دانشگاه خوزستان، ایران
3 دانش آموخته دکتری ماشینهای کشاورزی، دانشکده کشاورزی، دانشگاه تهران، ایران
چکیده
سموم دفع آفات جزء اساسی، کشاورزی مدرن محسوب میشوند و نقش مهمی در محافظت از محصولات کشاورزی دارند. ارزیابی بقایای سموم در میوه برای کنترل کیفیت آن تبدیل به پارامتر کلیدی برای مصرف کنندگان، تولید کنندگان و مسئولان گردیده است.مهمترین سم آلبالو استامیپراید میباشد. یک روش احتمالی برای تعیین بقایای سموم، استشمام ترکیبات معطر موجود در میوه با استفاده از بینی الکترونیکی است. بدین منظور دستگاه بینی الکترونیکی طراحی و ساخته شد. نمونههای سالم سمی و غیرسمی از درختان آلبالوی سم پاشی شده و نشده جمعآوری و طبق چهار درجه رسیدگی (RG1 = کاملاً رسیده ، RG2 = نزدیک به رسیدگی ، RG3 = متوسط رسیده و RG4 = نارس) توسط کارشناسان خبره (براساس اندازه، ویژگیهای ظاهر و همچنین تخمین مراحل رسیدگی) طبقهبندی شدند. تجزیه و تحلیل اجزای اصلی (PCA) و تجزیه و تحلیل تفکیک خطی (LDA) برای تشخیص الگوی آرایه سنسورها استفاده شدند. بطور کلی در آلبالوی سمی حسگر MQ3و در آلبالوی غیرسمی حسگر،TGS2602 بیشترین شدت پاسخ و نقش را در تشخیص سمی و غیرسمی بودن آلبالو داشتند.تجزیه و تحلیلPCA 89٪تا 96٪ واریانس دادهها را در تشخیص آلبالوی سمی و غیرسمی توصیف نمود. دقت تجزیه و تحلیل LDA برای تشخیص باقیمانده سم استامیپراید در 4 درجه رسیدگی مختلف آلبالوی سمی و غیر سمی 3/83-100% بود.
کلیدواژهها
عنوان مقاله [English]
Detection of Acetamiprid residue in sour cherry in different degrees of maturity using an electronic nose
نویسندگان [English]
- Nahid Aghili nategh 1
- adieh anvar 2
- mohammad jafar dalvand 3
1 Department of Agricultural Machinery Engineering, Sonqor Agriculture Faculty, Razi University, Kermanshah, Iran.
2 MSc Graduated in Food Science and Technology, Agricultural Science and Natural Resources University of Khuzestan, Iran.
3 PhD Graduated in Agricultural Machinery Engineering, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Iran.
چکیده [English]
Introduction Sour cherry fruit (Prunus cerasus) is one of the most desirable fruit by the consumer due to its precocity and great quality. Pesticides are considered a basic ingredient of modern agricultural. Pesticides have been widely applied to protect agricultural products against detrimental pests, to ameliorate their quality, and increase product efficiency .The evaluation of pesticide residues in fruits has become too much required provisions for consumers, producers and authorities for fruit quality control. Nowadays, monitoring programmes for pesticides in food are carried out worldwide to guarantee consumer health, better management of agricultural resources, and to prohibit economic losses Acetamiprid is the most important pesticides of sour cherry. A possible tactic for defining the pesticide residues, sensing the aromatic volatiles released by fruit using e-nose. The e-noses (Electronic nose) is one of the best non-destructive methods which have shown to be well superseded for conventional methods in food odor detection
Materials and Methods For detection the acetamiprid residue in sour cherry, the e-nose machine was designed and fabricated. The e-nose mainly composed of: data acquisition card (USB self-designed), sensor array, three two-way valves normally closed, vacuum pump, air filter (active carbon), GUI (LabVIEW 2014), power supply, laptop and sample chamber. The main stages of electronic nose work consist of three phases: 1- baseline 2- injection of sample odor into the sensor chamber 3- clearing the sensor array. The fractional method was employed in this research for baseline correction. Acetamipridpesticide Sprayed at 1 Liter per 1000 liters of water on cherry trees before pre-bloom in growth stage. This is a critical time for management of pests. Organic and inorganic healthy samples were collected from multiple trees sprayed and non-sprayed cherry trees and divided into four ripeness grades (RG1 = totally ripe, RG2 = close to ripeness, RG3 = intermediate to ripeness and RG4= unripe), according to the criteria used by expert growers (based on physical size and appearance as well as estimated maturity stages) during June2019. One uncontrolled (PCA) and one controlled (LDA) pattern recognition models were used to classify fruit samples.
Results and Discussionorganic and inorganic sour cherries have different response patterns. This indicates that their aromatic compounds are different. Generally, in organic sour cherry MQ3sensor and in inorganic sweet cherry TGS2602 sensor had the highest response and role in detecting organic and inorganic sour cherries. PCA analysis described 89% to 96% of the variance in the diagnosis of organic and inorganic sour cherries. The value of variance in the first and second principal components changed from 63% to 91% and 17% to 26%, respectively. Organic and inorganic sour cherry in RG1, RG2, RG3 and RG4 significantly discriminated.
To check the association of each sensor in the acetamipride diagnosis, loading plot, were used. In all of RGs TGS2620, TGS2610, MQ9 and TGS2611 have lowest response and sensors MQ3, TGS813, TGS2602 and TGS826 showed the highest contribution in detection acetamipride residue in sour cherry. For detection of ripeness grades of inorganic sour cherry the amount of variance in the first and second principal components was 81% and 10%, respectively. RG1 and RG2 and RG3 and RG4 overlapped. For organic sour cherry PC1 and PC2 described 63% and 26%, respectively, of the variance between samples. RG2 and RG3 overlapped. Also TGS2610, TGS2611 and TGS2620 have lowest response than to other sensors in detection RGs in organic and inorganic sour cherryLDA could specify acetamipride in sour cherry very well. The accuracy of LDA analysis for residual detection of acetamipride at 4 degrees of maturity was 83.3-100%. LDA could specify RGs of inorganic sour cherry well, but RG2 and RG3 and RG3 and RG4 have little overlap. The accuracy of the analysis was 95.83%. For organic sour cherry LDA could to distinguish RGs well, but RG3 and RG4 have little overlap. The accuracy of the analysis was 97.2%
Conclusion Each two methods can be detected acetamipride, but LDA with correct classification percentage83.3-100%. are the best methods. According to the study, it can be expressed that the e-nose is a suitable instrument for detecting acetamipride residue of sour cherry and can be used with less time and cost to determine the appropriate harvest time.
کلیدواژهها [English]
- Organic
- Inorganic
- Sour cherry
- Electronic nose
- PCA
- LDA
References
- Agulheiro- Santos, A.C. Quality of Strawberry 'CAMAROSA' with different levels of nitrocen fertilization. ISHS Acta Horticulturae, 842: 907-910.
- Ahmad, I., Shamsi, Sh., and Zaman, R. 2017. A review on sour cherry (Prunus cerasus): A high value Unani medicinal fruit. International Journal of Green Pharmacy, 11 (1): 1-6.
- Amini Jam, and Kabiri Dehkordi, S. 2018. Effects of spirotetramat, acetamiprid, pirimicarb and flonicamid on parasitoid wasp, Lysiphlebus fabarum (Marshall) (Hym.: Braconidae) under laboratory conditions. Plant Pest Research, 8(2): 67-81. (In Farsi).
- Arias, L.A., Bojacá, C.R., Ahumada, Di.A., and Schrevens, E. 2013. Monitoring of pesticide residues in tomato marketed in Bogota, Colombia. Food Control, 1-22.
- Atashbar, S., Rasooli sharabiani, V., and taghinezhad, E. 2018. A review of the use of olfactory machine technology for medicinal plants classification. 11th National Congrees on Biosystem Engineering and Mechanization. 1-8. (In Farsi)
- Barrett, D., Somogyi, L., and Ramaswamy, H. 2005. Fruits Processing. 2nd ed. CRC press. New York.
- Benedetti, S., Spinardi, A., Mignani, I., and Buratti, S. 2010. Non-destructive evaluation of sweet cherry (prunus avium l.) Ripeness using an electronic nose. Italian journal of food science, 22(3): 298-304.
- Bursic, , V., Vukovic, G., Đukic, M., Petrovic, A., Cara, M., Marinkovic, D., and Đurovic- Pejcev, R. Article entitled: Determination of multi-class pesticide residues in sour cherries by LC-MS/MS. Contemporary Agriculture, 67 (3-4): 227-232.
- Chen, L., Zhang, X., Jin, Q., Yang, L., Li, J., and Chen. F. 2015. Free and bound volatile chemicals in Mulberry (Morus atropurpurea Roxb). Journal of Food Science, 80(5):75-983.
- Cosio, M., Ballabio, D., Benedetti, S., and Gigliotti, C. 2007. Evaluation of different storage conditions of extra virgin olive oils with an innovative recognition tool built by means of electronic nose and electronic tongue. Food Chemistry, 101(2): 485-491.
- Di Natale, C., Macagnano, A., Martinelli, E., Paolesse, R., Proietti, E.D., and Amico, A. 2001. The evaluation of quality of post-harvest oranges and apples by means of an electronic nose. Sensors and Actuators B: Chemical, 78(1-3): 26-31.
- Esteki, M., Farajmand, B., Kolahderazi, Y., and Simal-Gandara, J. 2017. Chromatographic Fingerprinting with Multivariate Data Analysis for Detection and Quantification of Apricot Kernel in Almond Powder. Food Analytical Methods, 10: 3312-3320.
- FAO (2019). Statistical Database. Available.
at:www.faostat.fao.org/site/339/default.aspx May 2017.
- Fisher, R. A. 1936. The use of multiple measurements in taxonomic problems. Annals of human Genetics, 7: 179-188.
- Garcia Breijo, E., Guarrasi, V., Masot Peris, R., Alcaniz Fillol, M., and Olguin Pinatti, C. (2013). Odour sampling system with modifiable parameters applied to fruit classification. Journal of Food Engineerin, 116: 277–285.
- Gutierrez-Osuna, R., Nagle, H.T., Kermani, B., and Schiffman, S.S. 2002. Signal conditioning and preprocessing, Handbook of Machine Olfaction: Electronic Nose Technology, 105-132.
- Hajinejad, M., Mohtesabi S., Ghasemi Varnamekhati M., and Aghbashloo M. 2017. Detecting Adulteration in Lotus Honey Using a Machine Olfactory System. Journal of Agricultural Machinery, 7 (2):439-450. (In Farsi).
- Heidarbeigi, K., Mohtasebi, S. S., Foroughirad, A., Ghasemi-Varnamkhasti,
, Rafiee, S., and Rezaei, K. 2015. Detection of adulteration in saffron samples using electronic nose. International Journal of Food Properties, 18(7): 1391–1401. - Heidarbeigi, H., Mohtasebi, S.S., Foroughirad, A., Ghasemi-Varnamkhasti, M., Rafiee, SH., and Rezaei K. 2014. Detection of adulteration in saffron samples using electronic nose. International Journal of Food Properties, 18(7): 1391-1401.
- Holb, I.J. 2005. Effect of Fungicide Treatments and Sanitation Practices on Brown Rot Blossom Blight Incidence, Phytotoxicity, and Yield for Organic Sour Cherry Production. Plant Disease, 89 (11): 1164-1170.
- Jallow, M.F. A., Awadh, D.G., Albaho, M.S., Devi, V.Y., and Ahmad, N. 2017. Monitoring of Pesticide Residues in Commonly Used Fruits and Vegetables in Kuwait. International Journal of Environmental Research and Public Health, 14(8): 833.
- Kashwan, K.R. and Bhuyan, M. 2005. “Robuest electronic- nose system with tempreture and humidity drift compensation for tea and spice flavor discrimination,” Asian Conf. Sensors Int. Conf. New Tech. Pharm. Biomed. Res. – Proc., Vol, , pp. 154-158.
- Keramat-Jahromi, M., Mohtasebi, S.S., Mousazadeh, H., Ghasemi-Varnamkhasti, M., Rafiee, Sh., and Savand-Roumi, E. 2019. Evaluation of a Machine Olfaction to Classify the Quality of Dried Date Fruit by Electrohydrodynamic, Hot Air, and the Hybrid Drying Techniques. Iranian Biosystems Emgineering Journal, 50(1): 241-251. (In Farsi).
- Kiani, S., Minaei, S., and Ghasemi-Varnamkhasti, M. 2018. Real-time aroma monitoring of mint (Mentha spicata L.) leaves during the drying process using electronic nose system. Measurement, 124: 447-452.
- Ostovan, H. Yazdanpak, A., Hesami, Sh., and Gheibi, M. 2018. Assessment of four pesticide residues (diazinon, imidacloprid, primicarb and acetamiprid) in cucumber under greenhouse condition of Iran (Fars province). Iranian Journal of Entomological Research, 10(2):19-28. (In Farsi).
- Poll, L. Petersen, M.B., and Nielsen, G.S. 2003. Influence of harvest year and harvest time on soluble solids, titrateable acid, anthocyanin content and aroma components in sour cherry (Prunus cerasus L. cv. 'Stevnsbaer'). European Food Research and Technology, 216 : 212–216.
- Sanaeifar, A., ZakiDizaji, H., Jafari, A., and Guardia, M.d. 2017. Early detection of contamination and defect in foodstuffs by electronic nose: A review. TrAC Trends in Analytical Chemistry, 97, 257-271.
- Sanaeifar, A., Mohtasebi, S.S., Ghasemi-Varnamkhasti, M., and Ahmadi, H. 2016. Application of MOS based electronic nose for the prediction of banana quality properties. Measuremen, 82, 105–114.
- Shabani, P., Izadi, Z., Ghasemi Varnamekhati, M., Tohidi, M., and Rizzi, S. 2018. Olfactory machine system,an effective solution for detection of adulteration in rosewater. The journal of Innovative Food Technologies, 6(1) 75-89. (In Farsi).
- Sudarsono, J., Rahardjo, S.S., and Kisrini, K. 2018. Organophosphate Pesticide Residue in Fruits and Vegetables. journal Kesehatan Masyarakat, 14 (2):172-177.
- Torri, L., Sinelli, N., and Limbo, S. 2010. Shelf life evaluation of fresh-cut pineapple by using an electronic nose. Postharvest biology and technology, 56(3), 239-245.
- Tudu, B., Kow, B., Bhattacharyya, N., and Bandyopadhyay, R. 2008. Comparison of multivariate normalization techniques as applied to electronic nose based pattern classification for black tea. In Sensing Technology, 2008. ICST 2008. 3rd International Conference on (pp. 254-258).
- Wen, Y.Q., He, F., Zhu, B.Q., Lan, Y.B., Pan, Q.H., Li, Y., Reeves, M.J., and Wang, J. 2014. Free and glycosidically bound aroma compounds in cherry (Prunus avium L.). Food Chemistry, 152 ,29–36.
- Wei, Zh., Xiao. X., Wang. J., and Wang. H. 2017. Identification of the Rice Wines with Different Marked Ages by Electronic Nose Coupled with Smartphone and Cloud Storage Platform. Sensors, 17(11): 2500.
- Wilson, A.D. 2014. Identification of insecticide residues with a conducting-polymer electronic nose. Chemical Sensors, 4: 3.
- Wilson, A.D. 2013. Fungicide residue identification and discrimination using a conducting polymer electronic-nose. SENSORDEVICES: The Fourth International Conference on Sensor Device Technologies and Applications. 116-121.
- Xu, ZH., Yuan-mao,J., Fu-tian, P., Nai-bo, H., Yan-ju', L., and Deng-chao, ZH. 2007. Changes of Aroma Components in Hongdeng Sweet Cherry During Fruit development. agricultural Sciences in China, 6(11): 1376-1382.
- Zakaria, A., Shakaff, A.Y.M., Masnan, M.J., Ahmad Saad, F. S. Adom, A.H., Ahmad, M.N., Jaafar, M.N., Abdullah, A.H., and Kamarudin. L.M. 2012. Improved Maturity and Ripeness Classifications of Magnifera Indica Harumanis Mangoes through Sensor Fusion of an Electronic Nose and Acoustic. Sensors, 12: 6023-6048.