نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه بوعلی سینا همدان

2 دانشیار گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه بوعلی سینا همدان

3 استاد گروه زیست شناسی، دانشکده علوم پایه، دانشگاه بوعلی سینا همدان

چکیده

در این پژوهش اثر متغیرهای خشک‌کردن به شیوه خلائی- مادون قرمز شامل دمای هوای داخل محفظه و فشار خلأ بر خواص حرارتی (ضریب انتشار مؤثر رطوبت و انرژی مصرفی خشک‌کردن) ورقه‌های قارچ دکمه‌ای و شیمیایی (محتوای فنل کل) و کیفی (شاخص‌های رنگ نهایی ∆L*، ∆a* و b*∆) پودر قارچ دکمه‌ای مورد مطالعه قرار گرفتند. فرآیند خشک‌کردن نمونه‌ها در سه سطح دمایی 40، 55 و °C 70 و سه سطح فشار خلأ 20، 40 و kPa 60 صورت گرفت. تجزیه و تحلیل آماری داده‌ها و بهینه‌سـازی فرآیند خشک‌کردن با استفاده از روش سطح پاسخ انجام شدند. نتایج نشان داد که با افزایش دمای محفظه، نرخ تبخیر رطوبت بافت افزایش یافت که منجربه کاهش زمان خشک‌شدن لایه‌های نازک قارچ دکمه‌ای خوراکی با خشک‌کن خلائی- مادون قرمز شد. افزایش دمای هوای محفظه بر ضریب انتشار مؤثر رطوبت ورقه‌های قارچ دکمه‌ای اثر مثبت و بر انرژی ویژه مصرفی خشک‌کردن اثر منفی داشت. افزایش دما سبب افزایش اختلاف بین شاخص‌های رنگ L* ،a* و b* پودر قارچ دکمه‌ای نسبت به قارچ تازه شد. نقطه بهینه خشک‌کردن قارچ دکمه‌ای در دمای °C40 و فشار خلأ kPa 823/40 به دست آمد. مقدار بهینه متغیر‌های مستقل شامل ضریب انتشار مؤثر رطوبت، انرژی ویژه مصرفی خشک‌کردن، محتوای فنل کل و شاخص‌های رنگ نهایی L*∆ ، *∆a و*b∆ به ترتیب برابر با m2/s 9-10×06/3،MJ/kg 1088، mg/g 76/2، 28/15، 55/2 و 26/9 به دست آمدند. نتایج نشان داد که خشک‌کردن تحت دمای پایین‌تر و فشار خلأ متوسط سبب افزایش شاخص مطلوبیت گردید. قابلیت جریان‌پذیری پودر قارچ دکمه‌ای خوراکی خوب گزارش شد.

کلیدواژه‌ها

عنوان مقاله [English]

Optimization of a combination dryer (Vacuum-Infrared) operation in production process of edible button mushroom powder

نویسندگان [English]

  • Mostafa Jafarizadegan 1
  • Reza Amiri Chayjan 2
  • Roya Karamian 3

1 MSc Student, Department of Biosystems Engineering, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran.

2 Associate Professor, Department of Biosystems Engineering, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran.

3 Professor, Department of Biology, Faculty of Science, Bu-Ali Sina University, Hamedan, Iran.

چکیده [English]

Introduction Edible Button Mushroom (Agaricusbisporus) is one of the crops that is widely used today as a food source. Mushrooms after harvesting due to high humidity, high respiration rate, lack of cuticle and severe enzymatic activity, with persistence and quickly than other vegetables rot and discoloration begins immediately after harvest. To increase shelf life, edible mushroom must undergo processing processes. Drying is one of the most common methods of processing and preserving edible mushrooms. Vacuum-infrared drying is conducted by lowering moisture at low pressure to improve the quality of the high nutritional value product. Since button mushrooms have many applications due to their high nutritional value and medicinal uses, the best drying mode should be chosen to have the least negative effect on the quality properties and ingredients of the powder.
Materials and Methods Fresh edible button mushroom After washing were cut by a cutter at 5 mm thickness and dried using a vacuum-infrared dryer at three temperature levels of 40, 55 and 70 ° C and three vacuum pressure levels of 20, 40 and 60 kPa. Then the dried mushroom slices were milled and powdered using a mill machine for one minute. To homogenize the particle size, the button mushroom powder was sifted by a laboratory sieve with mesh No. 50 (cavity size 0.5 mm).In this study, the effect of vacuum-infrared drying variables including indoor air temperature and vacuum pressure on the thermal properties (effective moisture diffusion coefficient and drying energy consumption) of  button mushroom and chemical (total phenol content) and qualitative (color indices as ΔL *, Δa * and Δb*) button mushroom powders were studied. Statistical analysis of data and optimization of drying process were performed using response surface methodology and central composite design (CCD). After determining the optimum point of vacuum-infrared dryer, loose and compacted bulk density, work index, Hassner ratio, angle of repose, and button mushroom powder slides were measured at optimum point and Finally the flow-ability of the edible button mushroom powder was determined.
Results and Discussion The results showed that as the chamber temperature increased, the rate of evaporation of tissue moisture increased, which resulted in a decrease in the drying time of the edible button mushroom thin layers with vacuum-infrared dryer. Effective moisture diffusion coefficient of drying of edible button mushroom thin films ranging from 1.8 ×10-9 m2/s (40 kPa pressure and temperature 40 °C) to 8.9×10-9 m2/s (20 kPa pressure and 70 °C temperature) was varied. The results showed that the air temperature of the drying chamber had a positive effect on the effective moisture diffusion coefficient. This is because increasing energy and heat consumption increased the activity of water molecules and, as a result, more moisture penetrated outside the product at higher temperatures. The maximum amount of specific energy consumption was 1269.73 MJ/kg (60 kPa pressure and 40 ° C) and the lowest amount was 408.36 MJ/kg (40 kPa pressure and 70 °C). The results showed that at constant pressure with increasing temperature, as the drying time decreased sharply, the amount of specific energy consumption also decreased. The phenolic content of button mushroom powder was in the range of 270 mg/g (20 kPa pressure and 40 ° C) and 1.3 mg/g (40 kPa pressure and 70 ° C). As the temperature increased, the total phenol content decreased. The results showed that increasing the temperature caused a greater difference between the color indices of L*, a * and b* of button mushroom powder than fresh mushroom. Increase in temperature caused more darkening (decrease in L* index), decrease in redness (decrease in index a*) and decrease in yellowness (decrease in index b*) of mushroom powder. In general, color indices were closer to the values of fresh fungal samples at low temperatures. The optimum drying point of button mushroom was obtained at 40° C and vacuum pressure of 40.823 kPa. The optimum value of the independent variables including effective moisture diffusion coefficient, specific drying energy consumption, total phenol content and final color indices of edible button mushroom ΔL*, Δa* and Δb* were 3.06×10-9 m2/s, 1088 MJ/kg, 2.76 mg/g, 15.28, 2.55 and 9.26, respectively. The results showed that drying under lower temperature and medium vacuum pressure increased the desirability index. The flow-ability of edible button mushroom powder was reported to be good.
Conclusion According to the results of drying tests of edible mushrooms, the following results of this study are obtained in infrared vacuum drying: 1- The effect of air temperature on all variables of button mushroom response was significant in vacuum-infrared dryer. 2- The air inlet temperature to the dryer had a negative effect on the specific energy consumption of the drying process and the total phenol content of the button mushroom powder. 3- Increase in air temperature caused a greater difference between the color indices of L*, a* and b* button mushroom powder than fresh mushrooms. 4. The results showed that drying under mild conditions (lower temperature and medium vacuum pressure) increased the desirability index. 5-Flow-ability of edible button mushroom powder was reported to be good.

کلیدواژه‌ها [English]

  • Button edible mushroom powder
  • Drying
  • Vacuum – Infrared
  • Total phenol content
  • Physical Properties
  1. References

    1. Ahmadi, G. M., and Amiri Chayjan, R. (2017). Optimization of hazelnut kernel drying in an inferared dryer with microwave pretreatment using response surface metodology. Iranian Journal of Food Science and Technology, 14(64): 165-178. (in Persian with English abstract)
    2. Alaei, B., and Amiri Chayjan, R. (2015). Drying characteristics of pomegranate arils under near infrared‐vacuum conditions. Journal of Food Processing and Preservation, 39(5): 469-479.
    3. Alibas, I. (2007). Energy consumption and colour characteristics of nettle leaves during microwave, vacuum and convective drying. Biosystems Engineering, 96(4): 495-502.
    4. AmirNejat, H., Khoshtaghaza, M., and Pahlavanzadeh, H. (2011). A determination of thin layer drying kinetics of button mushroom when dried through an infrared applied drying method. Iranian Journal of Biosystems Engineering, 42(1): 53-61. (in Persian with English abstract)
    5. Arslan, D., and Özcan, M. (2011). Drying of tomato slices: changes in drying kinetics, mineral contents, antioxidant activity and color parameters secado de rodajas de tomate: cambios en cinéticos del secado, contenido en minerales, actividad antioxidante y parámetros de color. Journal of Food, 9(3): 229-236.
    6. Artnaseaw, A., Theerakulpisut, S., and Benjapiyaporn, C. (2010). Drying characteristics of Shiitake mushroom and Jinda chili during vacuum heat pump drying. Food and Bioproducts Processing, 88(2): 105-114.
    7. Aziz, M., Yusof, Y., Blanchard, C., Saifullah, M., Farahnaky, A., and Scheiling, G. (2018). Material properties and tableting of fruit powders. Food Engineering Reviews, 10(2): 66-80.
    8. Da Porto, C., and Natolino, A. (2018). Optimization of the extraction of phenolic compounds from red grape marc (Vitis vinifera L.) using response surface methodology. Journal of Wine Research, 29(1): 26-36.
    9. Gaur, T., Rao, P. B., and Kushwaha, K. P. S. (2016). Nutritional and anti-nutritional components of some selected edible mushroom species.‏ Indian Journal of Natural Products and Resources, 7(2): 155-161
    10. Ghasemi, A., and Chayjan, R. A. (2018). Optimization of pelleting and infrared-convection drying processes of food and agricultural waste using response surface methodology (RSM). Waste and Biomass Valorization, 10(6): 1711-1729.
    11. Kamel Rahimi, S., Elhami Rad, A., and Hemmati Kakhaki, A. (1394). Formulation and evaluation of fruit drink powder. Innovation in Food Science and Technology, 7 (4): 1-8.(in Persian)
    12. Kantrong, H., Tansakul, A., and Mittal, G. S. (2014). Drying characteristics and quality of shiitake mushroom undergoing microwave-vacuum drying and microwave-vacuum combined with infrared drying. Journal of Food Science and Technology, 51(12): 3594-3608.‏
    13. Karimi, F., Rafiee, S., Taheri-Garavand, A., and Karimi, M. (2011). Optimization of an air drying process for Artemisia absinthium leaves using response surface and artificial neural network models. Journal of the Taiwan Institute of Chemical Engineers, 43(1), 29-39.
    14. Khawas, P., Dash, K. K., Das, A. J., and Deka, S. C. (2016). Modeling and optimization of the process parameters in vacuum drying of culinary banana (Musa ABB) slices by application of artificial neural network and genetic algorithm. Drying Technology, 34(4), 491-503.‏
    15. Khosh Taghaza, M. H., Motevali, A., Minaei, S., and Abas Zadeh, A. (2015). Mathematical modeling of drying pomegranate arils in infrared dryer. Iranian Journal of Food Science and Technology, 13 (56) :101-112. (in Persian with English abstract)
    16. Koca, N., Burdurlu, H.S., and Karadeniz, F. (2007). Kinetics of colour changes in dehydrated carrots. Journal of Food Engineering, 78(2): 449-455.
    17. Liu, Y., Zhu, W., Luo, L., Li, X., and Yu, H. (2014). A mathematical model for vacuum far-infrared drying of potato slices. Drying Technology, 32(2): 180-189.
    18. Minaei, S., Motevali, A., Hematian, R., Abbasi, S., Ghaderi, A., and Najafi, G. (2013). Investigation of the variation of drying rate, effective diffusion coefficient, activation energy, and energy consumption for mushroom slices using microwave–vacuum drier. Journal of Food Science and Technology, 10 (41):1-12. (in Persian with English abstract)
    19. Mircea, C., Cioanca, O., Iancu, C., Tataringa, G., and Hancianu, M. (2015). In vitro antioxidant activity of some extracts obtained from Agaricus bisporus brown, Pleurotus ostreatus and fomes fomentarius. Farmacia, 63(6): 927-933.‏
    20. Moses, J. A., Norton, T., Alagusundaram, K., and Tiwari, B. K. (2014). Novel drying techniques for the food industry. Food Engineering Reviews, 6(3): 43-55.
    21. Muzaffar, K., Dar, B. N., and Kumar, P. (2017). Assessment of nutritional, physicochemical, antioxidant, structural and rheological properties of spray dried tamarind pulp powder. Journal of Food Measurement and Characterization, 11(2): 746-757.‏
    22. Pardeshi, B. M., and Pardeshi, P. M. (2009). The edible medicinal mushrooms as supportive natural nutrients: Study of nonvolatile mineral contents of some edible medicinal mushrooms from India; eastern remedies for modern western maladies. In Proceedings of the 5~(th) International Medicinal Mushroom Conference.‏
    23. Ponkham, K., Meeso, N., Soponronnarit, S., and Siriamornpun, S. (2012). Modeling of combined far-infrared radiation and air drying of a ring shaped-pineapple with/without shrinkage. Food and Bioproducts Processing, 90(2): 155-164.
    24. Pu, Y. Y., and Sun, D. W. (2015). Vis–NIR hyperspectral imaging in visualizing moisture distribution of mango slices during microwave-vacuum drying. Food Chemistry, 188: 271-278.
    25. Qi, L. L., Zhang, M., Mujumdar, A. S., Meng, X. Y., and Chen, H. Z. (2014). Comparison of drying characteristics and quality of shiitake mushrooms (Lentinus edodes) using different drying methods. Drying Technology, 32(15), 1751-1761.‏
    26. Rathore, H., Prasad, S., and Sharma, S. (2018). Mushroom nutraceuticals for improved nutrition and better human health: a review. PharmaNutrition, 5(2): 35-46.‏
    27. Safari, M., Amiri Chayjan, R., Alaei, B. (2016). Modeling of some thermal and physical properties of almond kernels under vacuum-infrared dryer with microwave pretreatment. Journal of Agricultural Engineering, 39(1), 21-37. (in Persian with English abstract)
    28. Salehi, F., Kashani Nejad, M., Sadeghi Mahoonak, A. R., and Ziyai Far, A M. (2016). Drying of button mushroom by infrared-hot air system. Iranian Journal of Food Science and Technology, 13(59): 151-159 (in Persian with English abstract)
    29. Sarabandi, K., and Peighambardoust, S. H. (2015). Effect of some production parameters and storage time on the flowability characteristics of spray-dried malt extract powder. Iranian Journal of Nutrition Sciences & Food Technology, 10(1): 51-60. (in Persian with English abstract)
    30. Shamaee, S., and Djome, Z. E. (2010). The effect of pre-treatments in combination with hot air, vacuum and hot-a microwave drying methods the progress of the drying process, and textural, and colour and rehydration rate on button mushroom (Agaricus bisporus). Iranian Food Science & Technology Research Journal, 6(3): 193-201.( in Persian)
    31. Shen, F., Peng, L., Zhang, Y., Wu, J., Zhang, X., Yang, G., Peng, H., Qi, H., and Deng, S. (2011). Thin-layer drying kinetics and quality changes of sweet sorghum stalk for ethanol production as affected by drying temperature. Industrial Crops and Products, 34(3): 1588-1594.
    32. Shishir, M. R. I., Taip, F. S., Aziz, N. A., and Talib, R. A. (2014). Physical properties of spray-dried pink guava (Psidium guajava) powder. Agriculture and Agricultural Science Procedia, 2: 74-81.‏
    33. Singleton, V. L., and Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture, 16(3): 144-158.
    34. Sledz, M., and Witrowa-Rajchert, D. (2012). Influence of microwave-convective drying of chlorophyll content and colour of herbs. Acta Agrophysica, 19(4): 865-876.
    35. Demiray, E., and Tulek, Y. (2015). Color degradation kinetics of carrot (Daucus carota L.) slices during hot air drying. Journal of Food Processing and Preservation, 39(6), 800-805.‏
    36. Izli, N., & Isik, E. (2015). Color and microstructure properties of tomatoes dried by microwave, convective, and microwave-convective methods. International Journal of Food Properties, 18(2), 241-249.‏
    37. Šumić, Z., Vakula, A., Tepić, A., Čakarević, J., Vitas, J., and Pavlić, B. (2016). Modeling and optimization of red currants vacuum drying process by response surface methodology (RSM). Food chemistry, 203: 465-475.
    38. Toor, R. K., and Savage, G. P. (2006). Effect of semi-drying on the antioxidant components of tomatoes. Food Chemistry, 94(1): 90-97.
    39. Wasser, S. P. (2014). Medicinal Mushroom Science: Current Perspectives, Advances, Evidences, and Challenges, Biomedical Journal, 37: 345-356.‏
    40. Zhang, Z., Song, H., Peng, Z., Luo, Q., Ming, J., and Zhao, G. (2012). Characterization of stipe and cap powders of mushroom (Lentinus edodes) prepared by different grinding methods. Journal of Food Engineering, 109(3): 406-413.
    41. Xie, Y., Gao, Z., Liu, Y., and Xiao, H. (2017). Pulsed vacuum drying of rhizoma dioscoreae slices. LWT-Food Science and Technology, 80: 237-249.‏