نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مکانیزاسیون کشاورزی، گروه مکانیک بیوسیستم و مکانیزاسیون، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان

2 استادیار گروه مکانیک بیوسیستم و مکانیزاسیون دانشگاه علوم کشاورزی و منابع طبیعی خوزستان

چکیده

سمپاشی­های صورت گرفته در مزارع برای مبارزه با آفات از جمله مشکلاتی است که زندگی زنبورهای عسل و عملکرد آن­ها را تهدید می­کند. بنابراین در پژوهش حاضر شرایط درونی کندو با استفاده از تجهیز آن به حسگرهای ارتعاش، دما، رطوبت و دی اکسیدکربن طی مدت 72 ساعت از زمان سم­پاشی مزارع بررسی شد. با توجه به آنالیز­ ضرائب مل، آفت­کش سبب افزایش 100 واحدی شدت در محدوده فرکانسی 1800 تا 2200 هرتز شد. به علاوه با توجه به اطلاعات به­دست آمده از دیگر حسگرها، دما تحت شرایط نامساعد (وجود آفت­کش پریمیکارب (پریمور) wp50% در فضا) نسبت به شرایط نرمال از 35 به 39 درجه سلسیوس، میزان دی اکسید کربن از 450 به 530 پی پی ام و رطوبت حدود 10 درصد افزایش یافت. به منظور طبقه­بندی ویژگی­های استخراج شده تحت هر دو شرایط (شرایط آلوده به سموم شیمیایی و شرایط بدون آلودگی) ابتدا با استفاده از آنالیز مؤلفه­های اصلی انتخاب ویژگی­ صورت پذیرفت و 6 مؤلفه با حداقل خطای میانگین مربعات 078/0 انتخاب شدند. پس از انتخاب ویژگی­ها، طبقه­بندی ویژگی­های منتخب با استفاده از ماشین بردار پشتیبان با کرنل­های مختلف ( RBF، خطی، چندجمله­ای، کوادراتیک، سیگموئید) انجام شد که کرنل RBF دو شرایط غیرآلوده و آلوده به آفت­کش را به­ترتیب با 100% و 90% دقت تشخیص داد. به طور کلی از بین حسگرهای مورد استفاده در سامانه هوشمند، حسگر ارتعاش بهترین نتیجه را به منظور تشخیص شرایط نامساعد کندو در بر داشت.

کلیدواژه‌ها

عنوان مقاله [English]

Investigation the effect of chemical pollution caused by field spraying on honeybee behavior using data mining techniques

نویسندگان [English]

  • Zahra Abdolahzare 1
  • navab kazemi 2
  • Saman Abdanan Mehdizadeh 2

1 PhD student, Department of Mechanization and Mechanics of Biosystems Engineering, Faculty of Agricultural Engineering and Rural Development, Agricultural Sciences and Natural Resources University of Khuzestan, Iran

2 Assistant Professor of Mechanization and Mechanics of Biosystems Engineering, Faculty of Agricultural Engineering and Rural Development, Agricultural Sciences and Natural Resources University of Khuzestan, Iran

چکیده [English]

Introduction Honeybees play an important role in pollination. However, there are many problems that threaten the life of them. Pollinators can be exposed to insecticides during their application, by contact with residues, or from the ingestion of pollen, nectar or guttation fluid containing insecticide. The increasing use of neonicotinoids means there is a greater potential for pollinators to be exposed over longer periods as systemic insecticides can be found in the pollen and nectar of plants throughout their blooming period (Ellis, 2010). Exposure to insecticides may have lethal or sub-lethal behavioral or physiological effects. The impact of imidacloprid on homing flight was evaluated in field with a 500-m-distance between feeder and hive (Bortolotti et al. 2003). At the concentration of 100 lg kg-1 foragers fed with imidacloprid-added syrup returned to the hive, but this treatment caused a temporary inhibition of the foraging activity, lasting more than 5 h. Foragers fed with 500 and 1000 lg kg-1 of imidacloprid were seen neither at the hive nor at the feeding site, for the 24 h after the treatment (Bortolotti et al. 2003). Decourtye et al (2011) have shown how the RFID device can be used to study the effects of pesticides on both the behavioral traits and the lifespan of bees.In this context, they have developed a method under tunnel to automatically record the displacements of foragers individualized with RFID tags and to detect the alteration of the flight pattern between an artificial feeder and the hive. Fipronil was selected as test substance due to the lack of information on the effects of this insecticide on the foraging behavior of free-flying bees. They showed that oral treatment of 0.3 ng of fipronil per bee (LD50/20) reduced the number of foraging trips.
Therefore, the aim of this study was to monitoring and determination honeybee’s behavior in exposure to pesticide using data mining techniques.
Materials and Methods Three smart beehive systems developed to monitoring of hive internal conditions. Therefore, each beehive equipped with temperature and humidity (HDC1080, China), vibration (MPU6050, China), and CO2 (CCS811, China) sensors. Data was collected during spraying time for 48 hours and different features of vibration signal in two time-frequency and frequency domains were extracted by MFCC (Mel-Frequency Cepstral Coefficient) algorithm. After that, the most significant features were selected using PCA (Principle Component Analysis) which has been used specifically for extracting information from correlation matrices. Since the spectral dataforms the array of correlated variables containing overlapped information, this approach makes it possible to extractuseful information from high-dimensional data. To choose thenumber of components the cross-validationmethod was used. The extracted principal components wereused as the input variables for the classification model. In this paper, support vector machine with different kernel function including linear, polynomial, MLP, RBF, and quadratic was applied for performing classification.
Results and discussion According to the MFCC of internal vibration results, there were dramatic changes in the range of 1800 to 2200 Hz in the time of spraying; also, Spectrogram of MFCC coefficients for the X component acceleration shown intensity of 350 in the frequency of 2000 Hz and time range of 60 to 120 minutes; besides, humidity (8 to 18 %), the amount of CO2 (450 to 530 ppm) and temperature (35 to 39 C) increased during this time.To reduce the dimensionality of data five PCs with minimum estimated mean squared prediction error (0.078) were selected based on Monte Carlo method and used in classifier. Among the five kernels (RBF, linear, MLP, Polynomial, Quadratic), RBF could recognize normal and infected colony with identification rate of 100% and 90%, respectively.
Conclusions According to the results temperature, humidity, CO2, and vibration sensors can recognize internal condition of bee hive. Vibration features of honey bees movements were extracted using MFCC followed by PCA in frequency-time domain. Five PCs was selected by cross-validation method and RBF kernel was the best kernel with identification rate of 100% and 90% for normal and infected beehive, respectively. Generally, the vibration signals (that were recorded by acceleration sensor) have shown the best result compare to temperature, CO2, and humidity sensors. It is worth nothing that the use of two temperature and humidity sensors is necessary to monitor and control of beehive internal conditions.

کلیدواژه‌ها [English]

  • Smart beehive
  • Farm spraying
  • Support Vector Machine
  • Principle Component Analysis
  • Mel-Frequency Cepstral Coefficient
  1. References

    1. Adankon, M.M., and Cheriet, M. 2009. Model selection for the LS-SVM application to handwriting recognition. Pattern Recognition, 42(12): 3264–3270.
    2. Bencsik, M., Bencsik, J., Baxter, M., Lucian, A., Romieu, J. and Millet, M. 2011. Identification of the honey bee swarming process by analysing the time course of hive vibrations. Journal of Computers and Electronics in Agriculture, 76: 44–50.
    3. Bishop, J.C., Falzon, G., Trotter, M., Kwan, P., and Meek, P.D. 2019. Livestock vocalisation classification in farm soundscapes. Journal of Computers and Electronics in Agriculture, 162: 531-542.
    4. Bortolotti L, Montanari R, Marcelino J, Medrzycki P, Maini S, Porrini 2003. Effects of sub-lethal imidacloprid doses on the homing rate and foraging activity of honey bees. Bulletin of Insectology, 56(1):63–67
    5. Chung, Y. 2013. Automatic detection and recognition of pig wasting diseases using sound data in audio surveillance systems. Sensors (Basel), 13 (10): 12929–12942.
    6. Colin, M.E., Bonmatin, J.M., Moineau, I., Gaimon, C., Brun, S., and Vermandere, J.P.A Method to Quantify and Analyze the Foraging Activity of Honey Bees:Relevance to the Sublethal Effects Induced by Systemic Insecticides. Archives of Environmental Contamination and Toxicology, 47: 387–395.
    7. Decourtye, A., Devillers, J., Aupinel,, Brun, F., Bagnis, C., Fourrier, J., and Gauthier, M. 2011. Honeybee tracking with microchips: a new methodology to measure the effects of pesticides. 20(2): 429-437. Ecotoxicology, 20(2):429-37.
    8. Decourtye, A., Devillers, J., Cluzeau, S., Charreton, M, and Pham-Dele` gue, M.H. 2004. Effects of imidacloprid and deltamethrin on associative learningin honeybees under semi-field and laboratory conditions. Ecotoxicology and Environmental Safety, 57: 410–419.
    9. Ellis, M.D. 2010. Pesticides and bee toxicity. American Bee Journal, 150: 485–486.
    10. Ferrari, S., Silva, M., Guarino, M., and Berckmans, D. 2008. Monitoring of swarming sounds in bee hives for early detection of the swarming period. Journal of Computers and Electronics in Agriculture, 64(1): 72-77.
    11. Gunn, S.R. 1998. Support Vector Machines for Classification and Regression. Technical Report. Department of Electronics and Computer Science, University of Southampton, May 10.
    12. Kim, K.I., Jung, K., and Kim, H.J. 2002. Face recognition using kernel principal component analysis. IEEE Signal Processing Letters, 9(2): 40-42
    13. Lee, J.M., Yoo, Ch.K., Choi, S.W., Vanrolleghem, P.A., and Lee, I.B. 2004. Nonlinear process monitoring using kernel principal component analysis. Chemical Engineering Science, 59(1): 223-234.
    14. Lundin, O., Rundlöf, M., Smith, H.G., and Bommarco, R. 2015. Neonicotinoid insecticides and their impacts on bees: A systematic review of research approaches and identification of knowledge gaps. PLOS ONE.DOI:10.1371/journal.pone.0136928.
    15. Orak, H., Abdanan mehdizadeh, S., and Soltani kazemi, M. 2018. Determination of the Vibration Response of Sugarcane Stalk to Predict Fiber and Brix Using Image Processing. Agricultural Machinary Mechanic Researches Journal, 7(13). In Farsi
    16. N, S. and Deka, P.Ch. 2014. Support vector machine applications in the field of hydrology: A review. Applied Soft Computing, 19: 372-386.
    17. Ramirez-Romero, R., Chaufaux, J., and Pham Delègue, M.-H. 2005. Effects of Cry1Ab protoxin, deltamethrin and imidacloprid onthe foraging activity and the learning performances of the honeybee Apis mellifera, a comparative approach. Apidologie, 36: 601–611.
    18. Ramirez-Romero, R., Desneux, N., Decourtye, A., Chaffiol, A., and Pham-Delègue, M. H. 2008. Does Cry1Ab protein affectlearning performances of the honey bee Apis mellifera (Hymenoptera, Apidae). Ecotoxicology and Environmental Safety, 70: 327–333.
    19. Tautz, J. 2001. Phase reversal of vibratory signals in honeycomb may assist dancing honeybees to attract their audience. Journal of Experimental Biology, 204: 3737–3746.
    20. Todisco, M., Delgado, H., and Evans, N. 2017. Constant Q cepstral coefficients: A spoofing countermeasure for automatic speaker verification. Computer Speech and Language Journal, 45:516-535.
    21. Villa, S., Vighi, M., Finizio, A., and Bolchi Serini, G. 2000. Risk assessment for honeybees from pesticide-exposed pollen. Ecotoxicology, 9:287–297
    22. Xu, Q.S. and Liang, Y.Z. 2001. Monte Carlo cross validation. Chemometrics and Intelligent Laboratory Systems Journal. 56:1–11.
    23. Yang, E. C., Chuang, Y. C., Chen, Y. L., and Chang, L. H. 2008. Abnormal foraging behavior induced by sublethal dosage of Imidacloprid in the honey bee (Hymenoptera: Apidae). Journal of Economic Entomology, 101:1743–1748.