نوع مقاله : مقاله پژوهشی
نویسندگان
1 دانشجوی کارشناسی ارشد، گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه کردستان، کردستان، ایران
2 دانشیار گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه کردستان، کردستان، ایران
3 استادیار ، دانشکده کشاورزی و منابع طبیعی، دانشگاه اردکان، اردکان، ایران
چکیده
ارزیابی تناسب اراضی برای افزایش تولید و برنامهریزی یک سیستم کشاورزی پایدار ضروری است. گندم یکی از مهمترین محصولات استراتژیک میباشد که نقشه تناسب اراضی میتواند مناسبترین واحد اراضی را برای کشت آن مشخص کند. هدف از این پژوهش نقشهبرداری رقومی شاخص تناسب اراضی برای گندم دیم میباشد. بدین منظور در منطقهای به وسعت 6500 هکتار در استان کردستان ابتدا نقشه اجزاء واحد اراضی به روش فیزیوگرافی ماهلر تهیه و سپس بر اساس آن 17 پروفیل شاهد در هر اجزاء واحد اراضی حفر و تشریح شدند. همچنین 105 نمونه اوگر در سه عمق (0-20، 20-50 و 50-100 سانتیمتری) برداشت شد. در کلیه نمونهها ی خاک خصوصیات بافت، اسیدیته، کربن آلی، آهک، گچ، ESP، ٍهدایت الکتریکی و سنگریزه اندازهگیری شد. با استفاده از خصوصیات اقلیم، خاک و توپوگرافی شاخص تناسب اراضی گندم دیم محاسبه گردید. نهایتاٌ نقشه تناسب اراضی رقومی با استفاده از مدل شبکه عصبی مصنوعی و دادههای کمکی تهیه گردید. نتایج نشان داد که منطقه دارای حدود 61/36 درصد کلاس N2، 32/40 درصد کلاس N1 و 53/22 درصد کلاس S3 میباشد. محدودیتهای اصلی منطقه برای کشت گندم عمدتاً، توپوگرافی، خاک کم عمق، سنگریزه و pH میباشد. نتایج اعتبارسنجی مدل بر اساس شاخصهای آماری میانگین ریشه مربعات خطا، میانگین خطا و ضریب تبیین (به ترتیب 75/6، 31/4 و 68/0) نشان دهنده دقت مناسب مدل میباشد.
کلیدواژهها
عنوان مقاله [English]
Digital soil mapping of land suitability index of rain-fed wheat (Case study: Ghorveh, Kurdistan Province)
نویسندگان [English]
- L. Rasoli 1
- K. Nabiollahi 2
- R. Taghizadeh Mehrjardi 3
1 M.Sc. Student, Department of Soil Science and Engineering, Faculty of Agriculture, University of Kurdistan, Kurdistan, Iran
2 Associate Professor, Department of Soil Science and Engineering, Faculty of Agriculture, University of Kurdistan, Kurdistan, Iran
3 Assistant Professor, Agriculture and Natural Resources Faculty, Ardakan University, Ardakan, Iran
چکیده [English]
Introduction Rapid population growth in developing countries implies that more food will be required to meet the demands of this population. Wheat as one of the most important grain crops in the world is a great source of food for human which is planted under a wide range of environments and its production influences on local food security. The production of wheat per unit area in Iran is low compared to developed countries in the world. One of the main causes for this low yield is that the suitable land for planting has not been recognized. Therefore, to overcome this problem, land suitability assessment is needed, which can help to increase crop yield. The first step in agricultural land use planning is land-suitability assessment which is often conducted to determine which type of land use is suitable for a particular location Digital mapping approach have been applied to link between soil observations and auxiliary variables to understand spatial and temporal variation in soil class and other soil properties. Little attempt has been made for using Digital mapping approach to digitally map land suitability classes Therefore, this paper applied land suitability assessment framework and digital soil mapping approach to map land suitability for rain-fed wheat in Kurdistan province.
Materials and Methods The study area is located in Kurdistan Province, western Iran. It surrounds the city of Ghorveh and covers a region of 6500 ha. The climate is semi-arid whose features can be performed using a cold and rainy winter and a moderate and dry summer. The mean yearly rainfall is 369.8 mm and over 90% of the rain falls between November and March. The mean temperature (10.8℃) is relatively cool. Soil moisture and temperature regimes are Xeric and Mesic, respectively. The physiography units include piedmont, fan, hills, and mountain and slope varies from gentle to very steep. At first land unit component map was prepared by Mahler physiography method, then, 17 representative profiles in each land unit component were dug and described. 105 auger samples also were taken at three depths (0-20, 20-50 and 50-100 cm). Soil texture, acidity, organic carbon, CaCO3, gypsum, ESP, electrical conductivity and gravel were measured in all soil samples. Topography and climate data were also recorded. Numeric ratings of soil, topography and climate parameters based on land requirements of wheat were determined and land suitability index using parametric method were calculated. Then land suitability classes of wheat were determined. A set of auxiliary variables (i.e. land unit component, terrain attributes and remotely sensed data) to predict land suitability classes of rain-fed wheat. In order to generate land suitability class map, artificial neural network were applied to make relation between auxiliary variables and land suitability classes.
Results and Discussion The results showed that the area has about 36.61% N2 class, 40.32% N1 class and 22.53% S3 class. The validation results of the model based on the statistical indices including root mean square error, mean error, and determination coefficient (6.56, 4.81, 0. 68, respectively), indicates that the artificial neural network model has suitable accuracy. Auxiliary data including MrVBF index, LS factor, MRRTF index, slope, Land unit component, VDCN and band 2 were the most important for prediction of wheat land suitability index in digital method. The major limitation of the study area to plant rain-fed wheat were rainfall in the flowering stage, sever slope, shallow soil depth, high pH and gravel. Therefore, to increase production and sustainable agricultural system it is suggested land improvement operations such as terracing, decreasing pH, supplementary irrigation and gathering gravel. The highest values of rain-fed land suitability index were observed in the units physiographic of river plain and plateau, while the lowest value were observed in the units physiography of mountain and hill which had high slope, shallow soil and high gravel. These results were confirmed by one-way ANOVA and Duncan tests.
Conclusion Based on the results of statistics indices artificial neural network had suitable accuracy for predicting land suitability index of wheat. In general, the study area, because of limitation of sever slope, shallow soil, high pH, and gravel, has low land suitability index for rain-fed wheat. Hence, to improve land suitability of the study area and increasing its production, suitable land improvement operations is required.
کلیدواژهها [English]
- Parametric method
- pedometry
- auxiliary data
- artificial neural network
- Adhikari, K., Minasny, B., Greve, B. G., Greve, M. H. 2014. Constructing a soil class map of Denmark based on the FAO legend using digital techniques. Geoderma, 214- 215: 101–113.
- Ahmed, H.R., and Terribile, F. 2013. Introducing a New Parametric Concept for Land Suitability Assessment. Environmental Science and Development, 4(1): 15-19.
- Akbarpour, A., Khorashadizadeh, O., Shahidi, A., Ghochanian, E. 2014. Performance evaluation of artificial neural network models in estimate production of yield saffron based on climate parameters. Journal of Saffron Research, 1(1): 27-35. (In Persian)
- Aksoy, E., Yigini, Y., Montanarella, L. 2007 . Combining soil databases for topsoil organic carbon mapping in europe. PLoS ONE, 11(3):1-17.
- Ayobi, Sh., and Jalalian, A. 2013. Modern concepts in Soil Science (Pedometric). Isfahan University of Technology. Press, 385p. (In Persian)
- Bower, C.A., Reitemeier, R.F., Fireman, M. 1952. Exchangeable cation analysis of saline and alkali soils. Soil Science, 73: 251-262.
- Dai, P.F., Qigang, Z., Zhiqiang, L.V., Xuemei, W., Gangcai, W.L. 2014. Spatial prediction of soil organic matter content integrating artificial neural network and ordinary kriging in Tibetan Plateau. Ecological Indicators, 45: 184-194.
- Dang, K.B., Burkhard, B., Windhorst, W., Muller, F. 2019. Application of a hybrid neural-fuzzy inference system for mapping crop suitability areas and predicting rice yields. Environmental Modelling and Software, 2019 (114): 166-180.
- Gee, G.W., and Bauder, J.W. 1986. Particle size analysis, P 383-411. In: A. Klute. (ed). Methods of Soil Analysis. Part 1: Physical and mineralogical methods, second edition. American Society of Agronomy, Inc., Soil Science Society of America, Inc., Madison, WI.
- Givi, J. 1997. Qualitative Evaluation of Land Suitability for Field and Fruit Crops. Iranian Soil and Water Research Institute, Tehran, Iran. (In Persian)
- Jafari, A., Finke, P.A., De Wauw, J.V., Ayoubi, S., Khademi, H. 2012. Spatial prediction of USDA- great soil groups in the arid Zarand region, Iran: comparing logistic regression approaches to predict diagnostic horizons and soil types. European Journal of Soil Science, 63: 284–298.
- Jiang, P., and Thelen, K.D. 2004. Effect of soil and topographic properties on crop yield in a north-central corn soybean cropping system. Agronomy Journal, 96: 252- 258.
- Kidd, D., Webb, M., Malone, B., Minasny, B., McBratney, A. 2015. Digital soil assessment of agricultural suitability, versatility and capital in Tasmania, Australia. Geoderma Regional, 6: 7–21.
- Marcel, G. S., Feike, J.L., Martinus, T., van Genuchten, H. 1998. Neural Network Analysis for Hierarchical Prediction of Soil Hydraulic Properties. Soil Science Society of America Journal, 62: 847-855.
- McBratney, A.B., Mendonça Santos, M.L., Minasny, B. 2003. On digital soil mapping. Geoderma, 117: 3-52.
- McLean, E.O. 1982. Soil pH and lime requirement, P 199–224 .9. In: Page, A.L., Miller, R.H., and Keeney, D.R. (Eds.), Methods of Soil Analysis, Part 2 Chemical and Microbiological Properties, 2nd ed. ASA-SSSA, Madison, WI.
- Minasny, B., and McBratney, A. 2002. The method for fitting neural network parametric pedotransfer functions. Soil Science Society of America Journal, 66: 2. 352-361.
- Mosleh, Z., Salehi, M. H., Fasakhodi, A. A., Jafari, A., Mehnatkesh, A., Borujeni, I. E. 2017. Sustainable allocation of agricultural lands and water resources using suitability analysis and mathematical multi-objective programming. Geoderma, 303: 52–59.
- Mousavi, S. A., Sarmadian, F., Taati A. 2017. Comparison of AHP and FAO Methods for Land Suitability Evaluation of Rainfed Wheat in Kuhin Area. J of Soil Research, (Soil and Water Science). 30(4): 367-377. (In Persian)
- Nabiollahi, K., Eskandari, Sh., Taghizadeh-Mehrjardi, R., Kerry, R., Triantafilis, J. 2019. Assessing soil organic carbon stocks under land use change scenarios using random forest models. Carbon Management, 10(1): 63–77.
- Nabiollahi, K., Golmohammadi, F., Taghizadeh-Mehrjardi, M., Kerry, R., Davari, M. 2018. Assessing the effects of slope gradient and land use change on soil quality degradation through digital mapping of soil quality indices and soil loss rate. Geoderma, 318: 482–494.
- Nelson, D. W., and Sommers, L. E. 1982. Total carbon, organic carbon, and organic matter. P 539-594 In: Page, A.L., R.H., D.R., Keeney (Eds.), Methods of Soil Analysis, Part 2-Chemical and Microbiological Properties. ASA-SSSA, Madison, WI.
- Norouzi, M., Ayoubi, S., Jalalian, A., Dehghani A. A. 2010. Predicting rainfed wheat quality and quantity by artificial neural network using terrain and Soil Characteristics. Acta Agriculturae. Scandinavica, Soil and Plant Science, 60: 241- 352.
- Prakash, T.N. 2003. December. Land suitability analysis for agricultural crops: a fuzzy multicriteria decision making approach. ITC.
- Rezaei, S., and Gilkes, R. 2005. The effects of landscape attributes and plant community on soil physical properties in rangelands, Geoderma, 125: 167-176.
- Rhoades, J.D. 1982. Soluble salts. In: Page, A.L. (Ed.), Methods of Soil Analysis, Part II, 2nd ed., ASA, Monograph No. 9, Madison, WI. pp: 167–179.
- Rossiter, D.G., and Hengl, T. 2001. Technical note: Creating geometrically-correct photo- interpretation, photomosaics, and base maps for a projects GIS. Available at http://www.itc.nl/rossiter.
- Soil Survey Staff, 2014. Keys to Soil Taxonomy, 12th edn. United States Department of Agriculture, Washington.
- Sparks, D.L., Page, A.L., Helmke, P.A., Leoppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, G.T., summer, M.E. 1996. Methods of Soil Analysis. Soil Science Society of American Journal. Book Series No. 5. ASA and SSSA, Madison, Wisconsin, WI, USA.
- Sys, C., Van Ranst, E., Debaveye, J. 1991. Land Evaluation. Part I: Principles in land evaluation and crop production calculations. Agricultural Publications No. 7. General Administration for Development Cooperation Place, Brussels, Belgium.
- Taghizadeh-Mehrjardi, R., Nabiollahi, K., and Kerry, R. 2016. Digital mapping of soil organic carbon at multiple depths using different data mining techniques in Baneh region, Iran. Geoderma, 253-254: 67-77.
- Taghizadeh-Mehrjardi, R. 2016. Modern concepts in Soil Science (Pedometric). Ardakan Univ. Press, 311p. (In Persian)
- Taghizadeh-Mehrjardi, R., Nabiollahi, K., Minasny, B., Triantafilis, J. 2015. Comparing data mining classifiers to predict spatial distribution of USDA-family soil groups in Baneh region, Iran. Geoderma, 253-254: 67-77.
- Tang, H. 1993. Land suitability classification based on fuzzy set theory and modelling of land production potential of maize and winter wheat in different zones of China (Doctoral dissertation, Ghent University).
- Vasu, D., Srivastava, R., Patil, N.G., Tiwary, P., Chandran, P., Singh, S.K. 2018. A comparative assessment of land suitability evaluation methods for agricultural land use planning at village level. Land Use Policy, 79: 146–163.
- Xu, E., and Zhang, H. 2013. Spatially-explicit sensitivity analysis for land suitability evaluation. Applied Geography, 45: 1-9.