نوع مقاله : کاربردی

نویسندگان

1 دانشجوی دکتری بیولوژی و بیوتکنولوژی خاک، گروه علوم و مهندسی خاک، دانشکده مهندسی و فناوری کشاورزی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران

2 استاد، گروه علوم و مهندسی خاک، دانشکده مهندسی و فناوری کشاورزی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران

3 دانشیار، گروه علوم و مهندسی خاک، دانشکده مهندسی و فناوری کشاورزی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران

4 استادیار، گروه علوم و مهندسی خاک، دانشکده مهندسی و فناوری کشاورزی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران

چکیده

استفاده از کشت درون شیشه­ای هیدروپونیک یکی از روش­های مفید و کاربردی برای انتخاب برترین جدایه­های باکتری­های محرک رشد گیاهان با توان بالای کلنیزاسیون در سطح ریشه می­باشد. در این راستا، پژوهش حاضر با هدف انتخاب برترین جدایه­ها از بین 16 جدایه باکتری حل­کننده فسفات که طی مراحل قبلی این پژوهش از دیم­زارهای گندم استان­های قزوین و زنجان جداسازی شده بودند، طراحی و در مدت 45 روز در اتاقک رشد اجرا گردید. قالب طرح کاملاً تصادفی و شامل تلقیح بذور گندم با 16 جدایه باکتری و کشت بذور جوانه­دار در محلول غذایی هوگلند (با قابلیت هدایت الکتریکی 8 دسی­زیمنس بر متر و پتانسیل اسمزی 54/0- مگاپاسکال) حاوی تری کلسیم فسفات (منبع فسفر نا­محلول) بود. در تیمارهای شاهد نیز بذور جوانه­دار بدون تلقیح با باکتری در محلول غذایی هوگلند حاوی مونو پتاسیم فسفات (شاهد با منبع فسفر محلول) و تری کلسیم فسفات (شاهد با منبع فسفر نامحلول) با سه تکرار کشت شدند. نتایج نشان داد که جوانه­های گندم تلقیح شده با جدایه B18 خشک شدند. به استثنای جدایه­های B (14, 17, 32)؛ بقیه جدایه­ها جمعیت بالای CFU106×6 بر گرم وزن تر ریشه، داشتند. تمامی جدایه­های باکتری نسبت به شاهد با منبع فسفر نامحلول، فسفر قابل دسترس محلول غذایی را افزایش و pH آن را کاهش دادند. در کل جدایه­های B3، B4، B6، B5، B1 و B2 برترین جدایه­ها از نظر توان کلنیزاسیون، افزایش محتوی آب نسبی برگ و شاخص­های رشد گیاه گندم بودند؛ و برای آزمایش­­های تکمیلی در گلخانه­ و مزرعه با بسترهای خاکی (در راستای تولید کود زیستی مناسب دیم­زارهای گندم) استفاده از این جدایه­ها توصیه می­شوند.

کلیدواژه‌ها

عنوان مقاله [English]

Study of colonization ability and effect of phosphate solubilizing bacteria isolated from dry-land farming on wheat growth indices under stresses of water deficit and salinity

نویسندگان [English]

  • E. Shirmohammadi 1
  • H.A. Alikhani 2
  • A.A. Pourbabaee 3
  • H. Etesami 4

1 Ph.D Student of Soil Biology and Biotechnology, Department of Soli Science and Engineering, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran

2 Professor, Department of Soli Science and Engineering, Faculty of Agricultural Engineering andTechnology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran

3 Associated Professor, Department of Soli Science and Engineering, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran

4 Assistant Professor, Department of Soli Science and Engineering, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran

چکیده [English]

Introduction The use of invitro hydroponic culture is one of the useful and practical methods for selection of superior isolates of plant growth promoting rhizobacteria with high colonization potential at root surface. In this regard, the present study was designed to select superior isolates isolated from dry-land farming of Qazvin and Zanjan provinces during the previous stages of this investigation.
Materials and Methods This experiment was carried out based on a completely randomized design (CRD), including: inoculation of wheat seeds with 16 bacterial isolates and culture of seedlings in Hoagland nutrient solution (EC 8 dS/m and osmotic potential (OP) -0.54 MPa) containing tricalcium phosphate (source of low-soluble phosphorus), as well as non-inoculated seedlings was cultured in Hoagland nutrient solutions containing monopotassium phosphate (control with source of soluble phosphorus) and tricalcium phosphate (control with source of low-soluble phosphorus) at three replications in growth chamber for 45 days. The length of the light (with 196 μmol photons m−2 s-1 light intensity) and dark period in these times was 16 and 8 h, respectively, The day and night temperature were 25±2 and 20±2 °C, respectively. At end of experiment (45 days after transportation of seedlings into invitro hydroponic culture) shoots and roots of plants were harvested separately; then, Population of phosphate solubilizing bacteria (PSB) on root surface, pH and concentration of available phosphorus in nutrient solution, fresh weight, dry weight and length of both section of plants, P-concentration and P-uptake of plant, and relative water content (RWC) of leaf were measured. Ultimately, correlation (Pearson) among measured traits were calculated.
Results and Discussion Results showed that inoculated wheat seedlings with B18 isolate perished. It seems that B18 isolate was either a highly pathogenic plant or its metabolites were highly inhibitory to the seedling which in short time killed the wheat seedling. Except B (14, 17, and 32) isolates; the rest of isolates had over 6×106 CFU/g root fresh weight. All bacterial isolates compared to the control with source of insoluble phosphorus, increased available phosphorus and decreased pH of nutrient solution. Dissolution of inorganic phosphates by PSB with chelating processes, secretion of inorganic and organic acids has been proven topic. Thus, reducing pH and increasing soluble phosphorus in nutrient solution at PSB treatments are reasonable. B (1, 2, 3, 4, 5, 6, 14, 17, 32) isolates treatments compared to control with tricalcium phosphate, increased RWC of leaf, and also increased length, fresh weight and dry weight of root and shoot of wheat plants. Previous research has shown that inoculation of plants with PGPR under drought and salinity conditions improved RWC of plant leaves and plant growth indices; Of course, result of some experiment show that some of PGPR do not always improve plant growth under all conditions. There was a significant positive correlation among P-uptake, RWC, root length, shoot height, fresh and dry weight of root and shoot of wheat plant. Also, the pH of nutrient solution had a positive correlation with root length, but it had a negative and significant correlation with P-concentration of nutrient solution and P-concentration of plant. PSB population at root surface had a negative correlation with pH of nutrient solution and root length of plant, but with P-concentration of nutrient solution had positive and significant correlation.
Conclusion All of screened and selected PSB isolates in lab (in respect of PGP traits) could not promote plant growth; even some of these isolates (such as B15 and B18) had negative effects on wheat growth indices. Inoculation of wheat with PSB isolates significantly increased the use of insoluble phosphorus. Solubility of tricalcium phosphate by isolates and increased phosphorus availability cannot lonely improve wheat growth indices; it seems that the outcome of the set of PGP effects of these bacteria and the secretion of their metabolites in the presence of plant root are determinative agents for improvement of wheat growth indices. Generally, B (1, 2, 3, 4, 5, 6, and 32) isolates were superior isolates in respect of colonization at root surface, relative water content (RWC) and growth indices of wheat plant; and these isolates are recommended for further experiments in greenhouse and field (in order to production of suitable biofertilizer for dry-land farming of wheat).

کلیدواژه‌ها [English]

  • Invitro culture
  • Nutrient solution
  • Phosphorus
  • Biofertilizer
  1. Adnan, M., Shah, Z., Fahad, S., Arif, M., Alam, M., Khan, I.A., Mian, I.A., Basir, A., Ullah, H., and Arshad, M. 2017. Phosphate-solubilizing bacteria nullify the antagonistic effect of soil calcification on bioavailability of phosphorus in alkaline soils. Scientific Reports, 7: 1-13.
  2. Ahmad, M., Adil, Z., Hussain, A. Mumtaz, M.Z., Nafees, M., Ahmad, I., and Moazzam, J. 2019. Potential of phosphate solubilizing bacillus strains for improving growth and nutrient uptake in mungbean and maize crops. Pakistan Journal of Agricultural Sciences, 56(2): 283-289.
  3. Akhtar, S.S., Andersen M.N., and Liua, F. 2015. Residual effects of biochar on improving growth, physiology and yield of wheat under salt stress. Agricultural Water Management, 158: 61–68.
  4. Awais, M., Tariqa, M., Ali, A., Ali, Q., Khan, A., Tabassum, B., Nasir, I.A., and T. Husnain. 2017. Isolation, characterization and inter-relationship of phosphate solubilizing bacteria from the rhizosphere of sugarcane and rice. Biocatalysis and Agricultural Biotechnology, 11: 312–321.
  5. Bano, Q., Ilyas, N., Bano, A., Zafar, N., Akram A., and Ul-Hassan, F. 2013. Effect of Azospirillum inoculation on maize (Zea mays L.) under drought stress. Pakistan Journal of Botany, 45: 13–20.
  6. Barnawal, D., Bharti, N., Pandey, S.S., Pandey, A., Chanotiya, C.S., and Kalra, A. 2017. Plant growth‐promoting rhizobacteria enhance wheat salt and drought stress tolerance by altering endogenous phytohormone levels and TaCTR1/TaDREB2 expression. Physiologia Plantarum, 161: 502-514.
  7. Bashan, Y., Kamnev, A.A., and Bashan, L.E. 2013. Tricalcium phosphate is inappropriate as a universal selection factor for isolating and testing phosphatesolubilizing bacteria that enhance plant growth: a proposal for an alternative procedure. Biology and Fertility of Soils, 49: 465–479.
  8. Compant, S., Clement, C., and Sessitsch, A. 2010. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biology and Biochemistry, 42: 669–678.
  9. Delfim, J., Schoebitz, M., Paulino, L., Hirzel J., and Zagal, E. 2018. Phosphorus availability in wheat, in volcanic soils inoculated with phosphate-solubilizing Bacillus thuringiensis. Sustainability, 10: 1-15.
  10. Etesami, H., and Maheshwari, D.K. 2018. Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects. Ecotoxicology and Environmental Safety, 156: 225– 246.
  11. Joe, M.M., Deivaraj, S., Benson, A., Henry, A.J., and Narendrakumar, G. 2018. Soil extract calcium phosphate media for screening of phosphate-solubilizing bacteria. Agriculture and Natural Resources, 52: 305-308.
  12. Jeshni, M.G., Mousavinik, M., Khammari I., and Rahimi. M. 2017. The changes of yield and essential oil components of German Chamomile (Matricaria recutita L.) under application of phosphorus and zinc fertilizers and drought stress conditions. Journal of the Saudi Society of Agricultural Sciences, 16: 60–65.
  13. Kadmiri, I.M., Chaouqui, L., Azaroual, S.E., Sijilmassi, B., Yaakoubi K., and Wahby, I. 2018. Phosphate-solubilizing and auxin-producing rhizobacteria promote plant growth under saline conditions. Arabian Journal for Science and Engineering, 43: 3403–3415.
  14. Kaur, G., and Reddy, M.S. 2014. Influence of P-solubilizing bacteria on crop yield and soil fertility at multi locational sites. European Journal of Soil Biology. 1-6.
  15. Kaur, G., and Reddy, M.S. 2015. Effects of Phosphate-solubilizing bacteria, rock phosphate and chemical fertilizers on maize-wheat cropping cycle and economics. Pedosphere, 25: 428–437.
  16. Malekutey, M. J. and M. N. Gheybi. 1997. Determination of the critical level of the nutritional elements in strategic products and the correct recommendation of fertilizer in the country. Agriculture Education Publication, Karaj. (in Persian)
  17. Murphy, J., and Riley, J.P. 1962. A modified single solution method for the determination of phosphorus in natural waters. Analytica Chimica Acta, 12: 31-36.
  18. Nadeem, S.M., Zaheer, Z.A., Naveed, M., and Nawaz, S. 2013. Mitigation of salinityinduced negative impact on the growth and yield of wheat by plant growthpromoting rhizobacteria in naturally saline conditions. Annals of Microbiology, 63: 225– 232.
  19. Page, V., and Feller, U. 2013. Selection and hydroponic growth of bread wheat cultivars for bioregenerative life support systems. Advances in Space Research, 52: 536–546.
  20. Pereyra, M.A., Garcia, P., Colabelli, M.N., Barassi C.A., and Creus, C.M. 2012. A better water status in wheat seedlings induced by Azospirillum under osmotic stress is related to morphological changes in xylem vessels of the coleoptile. Applied Soil Ecology, 53: 94-97.
  21. Probanza, A., Mateos, J.L., Garcia, J.A.L., Ramos, B., Felipe M.R., and Manero, F.J.G. 2001. Effects of inoculation with PGPR Bacillus and Pisolithus tinctorius on Pinus pinea L. growth, bacterial rhizosphere colonization, and mycorrhizal infection. Microbial Ecology, 41: 140–148.
  22. Rashid, M., Khalil, S., Ayub, N., Alam, S., and Latif, F. 2004. Organic acids production and phosphate solubilization by phosphate solubilizing microorganisms (PSM) under in vitro conditions. Pakistan Journal of Biological Sciences, 7: 187–196.
  23. Saleemi, M., Kiani, M.Z., Sultan, T., Khalid, A., and Mahmood, S. 2017. Integrated effect of plant growth-promoting rhizobacteria and phosphate-solubilizing microorganisms on growth of wheat (Triticum aestivum L.) under rainfed condition. Agriculture and Food Security, 6:1-8.
  24. Salem, G., Stromberger, M.E., Byrne, P.F., Manter, D.K., El-Fekid W., and Weir, T.L. 2018. Genotype-specific response of winter wheat (Triticum aestivum L.) to irrigation and inoculation with ACC deaminase bacteria. Rhizosphere, 8: 1–7
  25. Sapre, S., Gontia-Mishra, I., and Tiwari, S. 2018. Klebsiella sp. confers enhanced tolerance to salinity and plant growth promotion in oat seedlings (Avena sativa). Microbiological Research, 206: 25–3.
  26. Sharma, S.B., Sayyed, R.Z., Trivedi M.H., and Gobi, T.A. 2013. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springer Plus, 2: 587.
  27. Shukla, P.S., Agarwal, P.K., and Jha, B. 2012. Improved salinity tolerance of Arachishypogaea (L.) by the interaction of halotolerant plant-growth-promoting rhizobacteria. Journal of Plant Growth Regulation, 31: 195–206.
  28. Sperber, J.I. 1958. The incidence of apatite-solubilizing organisms in the rhizosphere and soil. Australian Journal of Agricultural Research, 9: 778.
  29. Stamford, N.P., Santos, P.R., Moura, A.M.M.F., and Freitas, A.D.S. 2003. Biofertilizers with natural phosphate, sulphur and Acidithiobacillus in a soil with low available-P. Scientia Agricola, 60: 767–773.
  30. Suarez, C., Cardinale, M., Ratering, S., Steffens, D., Jung, S., Montoya, A.M.Z., Schnella, R., and Geissler-Plauma, S. 2015. Plant growth-promoting effects of Hartmannibacter diazotrophic on summer barley (Hordeum vulgare L.) under salt stress. Applied Soil Ecology, 95: 23–30.
  31. Upadhyay, S.K., Singh, J.S., and Singh, D.P. 2011. Exopolysaccharide-Producing plant growth-promoting rhizobacteria under salinity condition. Pedosphere, 21: 214– 222.
  32. Vidya, P., Shintu, V.P., and Jayaram, M.K. 2016. Impact of phopshate solubilizing bacteria (Bacillus polymixa) on drought tolerance of green gram [Vigna radiata (L.) Wilczek]. Annals of Plant Sciences, 5(4): 1318-1323.
  33. Weatherley, P.E. 1950. Studies in water relations of cotton plants I, the field measurement of water deficit in leaves. New Phytologist, 49: 81-87.
  34. Westerman, L.R. 1990. Soil Testing and Plant Analysis. Soil Science Society of America, INC. Madison, Wisconsin, USA.
  35. Yuan, J., Zhang, N., Huang, Q., Raza, W., Li, R., Vivanco, J.M., and Shen, Q. 2015. Organic acids from root exudates of banana help root colonization of PGPR strain Bacillus amyloliquefaciens NJN-6. Scientific Reports, 5: 1-8.
  36. Zhang, N., Wu, K., He, X., Li, S., Zhang, Z., Shen, B., Yang, X., Zhang, R., Huang, Q., and Shen, Q. 2011. A new bioorganic fertilizer can effectively control banana wilt by strong colonization with Bacillus subtilis N11. Plant and Soil, 344: 87–97.