نوع مقاله : کاربردی

نویسندگان

1 دانشجوی دکتری گروه علوم خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

2 دانشیار گروه علوم خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

3 استادیار گروه علوم خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

4 فارغ التحصیل دکتری گروه علوم خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

چکیده

در این پژوهش، تأثیر کاربرد خاکی، محلول­پاشی و مصرف همراه با آب آبیاری اسید هیومیک بر ویژگی­های رشد رویشی و فراهمی آهن و فسفر در گیاه کلزا (رقم هایولا 308) مورد بررسی قرار گرفت. بدین منظور، آزمایشی در قالب طرح کاملاً تصادفی با 10 تیمار در 4 تکرار به صورت گلدانی به اجرا درآمد که تیمارها شامل مصرف خاکی اسید هیومیک در سه سطح (1، 2 و 4 گرم بر کیلوگرم خاک)، محلول­پاشی در سه سطح (0/1، 0/2 و 0/4 درصد)، همراه با آب آبیاری در سه سطح (1000، 2000 و 4000 میلی‌گرم در لیتر) و تیمار شاهد (بدون اسید هیومیک) بود. نتایج نشان داد که اثر نحوه کاربرد و سطوح مختلف اسید هیومیک بر ویژگی­های رشد رویشی به‌جز تعداد برگ معنی­دار شد. بیشترین وزن‌ تر برگ و ساقه به ترتیب با میانگین 3/43  و 5/92 گرم در گیاه در تیمار 2000 میلی­گرم در لیتر مصرف همراه با آب آبیاری دیده شد. نتایجنشان داد که بیشترین غلظت آهن کل ساقه و دانه به‌ترتیب با میانگین 85 و 25/321 میلی­گرم بر کیلوگرم مربوط به تیمار 2000 میلی­گرم در لیتر مصرف همراه با آب آبیاری اسید هیومیک بود. همچنین تیمار 0/4 درصد محلول­پاشی اسید هیومیک بیشترین غلظت آهن کل در برگ با میانگین 245/46 میلی­گرم بر کیلوگرم مربوط را داشت. بیشترین غلظت فسفر در برگ، ساقه و دانه نیز به­ترتیب با میانگین 0/4، 0/72 و 0/897 درصد مربوط به تیمار 2000 میلی­گرم بر لیتر مصرف همراه با آب آبیاری اسید هیومیک بود. نتایج حاصل از یافته­ها نشان داد که هر سه روش استفاده از اسید هیومیک موجب افزایش ویژگی­های رشد رویشی و فراهمی آهن و فسفر در گیاه کلزا نسبت به شاهد شدند اما درمجموع تیمار 2000 میلی­گرم در لیتر مصرف همراه با آب آبیاری اسید هیومیک از دو روش مصرف خاکی و محلول­پاشی اسید هیومیک مؤثرتر بود. 

کلیدواژه‌ها

عنوان مقاله [English]

Comparison of soil, foliar and fertigation application of humic acid on growth parameters and availability of iron and phosphorous of canola

نویسندگان [English]

  • T. Nazari 1
  • M. Baranimotlgh 2
  • E. Dordipour 2
  • R. Ghorbani nasrabadi 3
  • S. Sefidgar Shahkolaee 4

1 Ph.D Student, Department. of Soil Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

2 Associate Professor, Department. of Soil Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

3 Assistant Professor, Department. of Soil Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

4 Ph.D Graduated, Department. of Soil Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

چکیده [English]

Introduction One of the most important needs in crop planning is the evaluation of different systems of plant nutrition. plant nutrition in a correct way can preserve the environment and increase efficiency of agricultural inputs. Humic acid contains many nutrients that increase the soil fertility and soil organic matter content and thus affect plant growth and yield. In the present study, the effect of soil and foliar application as well as fertigation application of humic acid on iron and phosphorous availability of canola (Hyola 308) was evaluated.
Materials and Methods The soil was air-dried and ground to pass through a 2-mm sieve and then was analyzed to determine soil physical and chemical properties using standard methods. A greenhouse experiment was carried out with 10 treatments in four replications. Treatments include humic acid soil application at three levels (1, 2 and 4 g.kg-1 soil), foliar application at three levels (0.1, 0.2 and 0.4%) and three fertigation levels (1000, 2000 and 4000 mg L-1) and control). Soil application in the form of humic acid powder and in cropping time based on the soil weight of the pots and for spraying and use along with irrigation water, each of the spraying and together with irrigation water levels is divided into three equal parts and in three stages (plant establishment, stem elongation and flowering). At the end of growth period (for 139 days), vegetative growth indices were determined and then plants were harvested and stem and leaves were separated. Phosphorous content in plant extracts was measured by molybdate vanadate method (yellow method) and iron concentration in the samples was determined by atomic absorption (AAS-Unicam-919). Statistical analysis was conducted via SAS software and mean comparisons carried out by LSD test at 5% probability level.
Results and Discussion Results show that the application methods and the different levels of humic acid had significant impacts (p < 0.01) on the all parameters but they had no significant effects on the numbers of leaves. The maximum leaf fresh weight was 4.34 gr per plant which obtained water irrigated treatments with 2000 mg/lit. However, there was no significant difference between water irrigation with 4000 and 2000 mg/lit humic acid concentrations. Besides, maximum leaf dry weight was 0.37 gr in the plant that was water irrigated with 4000 mg/lit, however there was no significant difference between water irrigation with 4000 and 2000 mg/lit humic acid concentrations. Also, the maximum stem dry and fresh weight was 5.92 and 1.53 gr which observed in water irrigated with 2000 mg/lit. The application methods and the different levels of humic acid had significant impact (p<0.01) on the content and absorption of Fe and P excluding the Fe content in the root. The maximum Fe content in stem and seed were 321.25 and 85 mg/kg was observed in the treatment of humic acid with water irrigation of 2000 mg/lit. Also, in the treatment of spraying with 0.4 % of humic acid, the maximum of Fe concentration (245.46 mg/kg) was obtained. The humic acid molecules can pass from the cell membranes and cause iron reduction in the Apoplast and increase the availability of Fe. Because of the reduction effect of humic acid on the availability and accumulation of Fe in the plant tissue, increasing in the Fe absorption with humic acid treatment is observed. The increase in the accumulation of Fe by humic material might be due to the releasing phenolic material in the root rhizosphere. The maximum P concentration in the leaf, stem and seed were 0.40, 0.72 and 0.897 respectively that was observed in the treatment of water irrigation with 2000 mg/lit with humic acid. Due to the availability of phosphorus and other nutrients for wheat, humic acid increases the plant yield in the reproductive stage of seeding.
Conclusion Results of the study show that humic acid can ameliorate the negative effect of a large amount of phosphorus on iron availability. In fact, humic acid, due to providing nutritional balance for the plant, prevents negative effects caused by the high amounts of specific elements such as phosphorus. Also, the results showed that all three humic acid application methods increased vegetative growth parameters, and iron and phosphate availability for canola plant compared to control. But in general, 2000 mg/L acid humic with irrigation water was more effective than two methods of soil and foliar application.

کلیدواژه‌ها [English]

  • Canola
  • Humic acid
  • Iron
  • Phosphorous
  • Vegetative growth
  1. Abedi, T., and Pakniyat, H. 2010. Antioxidant enzyme changes in response to drought stress in ten cultivars of oilseed rape (Brassica napus L.). Czech Journal of Genetics and Plant Breeding, 46(1): 27-34.
  2. Abel-Mawgoand, A.M.R., El-Greadly, N.H.M., Helmy, Y.I., and Singer, S.M. 2007. Responses of tomato plants to different rates of humic-based fertilizer and NPK fertilization. Journal of Applied Sciences Research, 3: 169-174.
  3. Azizi, M., and Safaei, Z 2013. Effect of Humic Acid and Nanocyd Pharmax Spray on Oil and Essential Oil Seed Oil (Nigella sativa). First National Conference on Medicinal Plants and Sustainable Agriculture, Hamedan, Hegmataneh Environmental Assessment Center, 30(4): 671-680. (in Persian).
  4. Berg Marlene, G., and Hugh Gardner, E. 1978. Methods of soil analysis used in the soil testing laboratory at Oregon State University. Corvallis, Or. Agricultural Experiment Station, Oregon State University, 89: 4-16.
  5. Boehme, M., Schevtschenko, J., and Pinker, I. 2005. Iron supply of cucumbers in substrate culture with humate. Acta Horticulturae, 41: 329-335.
  6. Bremner, J.M., and Mulvaney, C.S. 1982. Nitrogen total. Methods of soil analysis. Part 2. Chemical and Microbiological.
  7. Broadley, M., Brown, P.I.C., Rengel, Z., and Zhao, F. 2012. Function of nutrients: micronutrients. In: Marschner, P. (Ed.), Marschner’s Mineral Nutrition of Higher Plants.elsevier, Amsterdam.
  8. Bronick, C.J., and Lal, R. 2005. Soil structure and management: a review. Geoderma, 124: 3-22.
  9. Cacco, G., Attina, E., Gelsomino, A., and Sidari, M. 2000. Effect of nitrate and humic substances of different molecular size on kinetic parameters ofnitrate uptake in wheat seedlings. Journal of Plant Nutrition and Soil Science, 163: 313-320.
  10. Chapman, H.D. 1965. Cation exchange capacity. In: Methods of Soil Analysis. Part 2. Black CA (ed). American Society of Agronomy, Madison, Wis, USA . Pp. 891- 901.
  11. Chen, Y., Clapp, C.E., and Magen, H. 2004. Mechanisms of plant growth stimulation by humic substances: the role of organo-iron complexes. Soil Science and Plant Nutrition, 50: 1089–1095.
  12. Cimrin, M.K., and Yilmaz, I. 2005. Humic acid application to lettuce do not improve yield but do improve phosphorus availability. Acta Agriculturae Scandinavica, Section B – Plant Soil Science, 55(1): 58- 63.
  13. Classen, N., and jones, D.L. 2004. Phosphorus solubilization by citrate in soil of low p availibilaty effect and mechanisms. Rhizospher international on gress abstract, 145: 12-17.
  14. Cordeiro, F., Catarina, C., Silveira, V., and Souza, S. 2011. Humic acid effect on catalase activity and the generation of reactive oxygen species in corn (Zea mays). Bioscience, Biotechnology, and Biochemistry, 75(1): 70-74.
  15. Ding, X., Song, X., and Boily, J.F. 2012. Identification of fluoride and phosphate binding sites at FeOOH surfaces. The Journal of Physical Chemistry, 116(41): 21939- 21947.
  16. Elahvirdizade, N., Nazari deljou, M.J. 2019. Effect of humic acid on morphophysiological indices, nutrient uptake and durability of post harvest harvest of marigold (Calendula officinalis cv. Crysantha) in Hydroponic System. Science and Technology of Greenhouse Crops, 5(18): 133-142.
  17. Emami, M. 1996. Legs analysis methods Technical Journal number 982. Soil and Water Research Institute, Tehran. Iran. 2: 128.
  18. Farajzadeh, M., and Nikeghbal, M., 2007. Evaluation medalus model eor desertification hazard zonation using GIS; study area: iyzad khast plain, Iran. Pakistan Journal of Biological Sciences, 10 (16): 2622- 2630.
  19. Frey, P.A., and Reed, G.H. 2012. The ubiquity of iron. ACS Chemical Biology, 7: 1477–1481.
  20. Gee, G.H. and Bauder, J.W. 1986. Particle size analysis, In Methods of Soil Analysis. Part 2, Physical properties. SSSA: Madison,WI. 383-409.
  21. Guan, X.H., Shang, C., Chen, G.H. 2006. Competitive adsorption of organic matter with phosphate on aluminum hydroxide. Journal of Colloid and Interface Science, 296(1): 51-58.
  22. Hakan, C., Vahap Katkat, A., Bulent Asık, B., and Turan, M.A. 2011. effect of foliar applied humic acid to dry weight and mineral nutrient uptake of maize under calcareous soil conditions communications. Soil Science and Plant Analysis, 42(1): 29-38.
  23. Hakimi, L., and Farzami sepehr, M. 2016. Investigating the accumulation of iron, copper and antioxidant response of dominant plant species around the Sorkhe township in Marand. Journal of Plant Peril Physiology,10(40): 21-30.
  24. Hartwigson, J.A., and Evans, M.R. 2000. Humicacid seed and substrate treatments promote seedling root development. Horticultural Science, 35(7): 1231-1233.
  25. Heidari, M., Khalili, S. 2014. Effect of Humic Acid and P Phosphorus on Grain and Flower, Photosynthetic Pigments and Mineral Ingredients in Sour Tea (Hisbiscus sabdariffa L). Journal of Iranian Crop Sciences, 45(2): 191-193.
  26. Hue, N.V. 1991. Effects of organic acids/anions on P sorption and phytoavailability in soils with different mineralogies. Soil Science, 152(6): 463-471.
  27. Jackosn, M.L. 1973. Soil Chemical Analysis Prentice Halla of India Private Limited. New Delhi, indian, 250p.
  28. Jones, C.A., Jacobsen, J.S., and Mugaas, A. 2004. Effects of humic acid on phosphorus avaliability and spring wheat yield. Facts Ferilizer, 32.
  29. Jones, J.B., and Case., V.W. 1990. Sampling, handling and analyzing plant tissue samples. Sampling, handling and analyzing plant tissue samples, (Ed. 3), 389-427.
  30. Katkat, A.V., Celik, H., Turan, M.A., and Boulet, B. 2009. Effects of soil and foliar applications of humic substances on dry weight and mineral nutrients uptake of wheat under calcareous soil conditions. Australian. Journal of Basic Applied Science, 3: 1266-1273.
  31. Kaya, C., Higgs, D., and Kirnak, H. 2001. The Effects of salinity and supplementary phosphorus and potassium on physiology and nutrition development of spinach. Bulgarian Journal of Plant Physiology, 27(3-4): 47-59.
  32. Kulikova, N.A., and Perminova, I.V. 2002. Binding of atrazine to humic substances from soil, peat, and coal related to their structure. Environmental. Science and Technology, 36: 3720-3724.
  33. Lee, Y.S., and Bartlette, R.J. 1976. Stimulation of plant growth by humic substances. Soil Science Society of America Journal, 40: 876-879.
  34. Lindsay, W.L., and Norvell, W.A. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42(3): 421- 428.
  35. Maluf, H.J.G.M., Silva, C.A., Curi, N., Norton, L.D., and Rosa, S.D. 2018. Adsorption and availability of phosphorus in response to humic acid rates in soils limed with CaCO3 or MgCO3. Ciência e Agrotecnologia, 42(1): 7-20.
  36. Mayi, A.A., Ramazan Ibrahim, Z., and Abdurrahmano, A.S. 2014. Effect of foliar spray of humic acid, ascorbic acid, cultivars and their interactions on growth of Olive (Olea European L.) Transplants Cvs. Khithairy and Sorany, IOSR Journal of Agriculture and Veterinary Science, 7(4): 18-30.
  37. Merkl, N., Hoogen, V., Hoogen, H., and Bens, O. 2006. Humic acid-based soil conditioners for soil cultivation in arid and semiarid climates: Potential for the economization of water and fertilizers. international Symposium on Drylands and ecology and human security, isdehs, sharjah, uae.
  38. Mohammadiaria M., Lakzaeian A., and Haghnia Gh. 2011. Effect of Inoculant Containing Thiobacillus and Aspergillus on Corn Growth. Iranian Journal of Agricultural Research, 8(11): 82-89. (In Persian).
  39. Mohammadipour, E., Golchin, A., Mohammadi, J., Negahdar, N., and Zarchini, M. 2012. Effect of humic acid on yield and quality of marigold (Calendula officinalis L.). Annals of Biological Research, 3(11): 5095-5098.
  40. Nardi, S., Muscolo, A.,Vaccaro, S., Baiano, S., Spaccini, R., and Piccolo, A. 2007. Relationship between molecular characteristics of soil humic fractions and glycolytic pathway and krebs cycle in maize seedlings. Soil Biology and Biochemistry, 39: 3138-3146.
  41. Nikolic, M., Cesco, S., Romheld, V., Varanini, Z., and Pinton, R. 2003. Uptake of iron (Fe-59) complexed to water-extractable humic substances by sunflower leaves. Journal of Plant Nutrition, 26(10): 2243-2252.
  42. Olsen, S.R. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. United States Department Of Agriculture; Washington.
  43. Perassi, I., and Borgnino, L. 2014. Adsorption and surface precipitation of phosphate onto CaCO3–montmorillonite: effect of pH, ionic strength and competition with humic acid. Geoderma, 232: 600-608.
  44. Piccolo, A., Celanoand, G., and Pietramellara, G. 1993. Effects of fractions of coalderived humic substances on seed germination and growth of seedlings (Lactuca sativa and Lycopersicon esculentum). Biology and Fertility of Soils, 16: 11-15.
  45. Sepehr, I., and zebardast, V.R. 2013. Effect of Humic Acid on Phosphorus Absorption Behavior in a Calcareous Soil. Journal water and soil (Agriculture Sciences and Technology), 27(4): 720-731.
  46. Talebi, P., Jabarzadeh, M., and Sedighani, R. 2018. Effect of Azideomic Application on Some Physiological Features of Seven-Color Miniature Roses. Process and Plant Application, 4(18): 789-804. (In Persian).
  47. Thi Lua, H., and Bome, M. 2001. The influence of humic acid on tomato in hydroponic system. Acta Horticulturae, 548: 451-458.
  48. Turkmen, O. 2005. Effects of arbuscular mycorrhizal fungus and humic acid on the seedling development and nutrient content of pepper grown under saline soil conditions. Journal of Biological sciences, 5(5): 568-574.
  49. Turkmen, O., Dursun, A., Turan, M., and Erdinc, C. 2004. Calcium and humic acid affect seed germination, growth, and nutrient content of tomato (Lycopersicon esculentum L.) seedlings under saline soil conditions. Acta Agriculture Scandinavica, 7: 168-174.
  50. Vatankhah, A., Mohammadkhani, A.R., Hushmand, S., and Kiani, Sh. 2015. Investigation on the effect of humic acid and zinc element on fruit quality and quantity, photosynthetic pigments and concentration of some elements in Asgari cultivar. To agricultural crop, 18(2): 303-318. (In Persian).
  51. Vaughan, D., and Malcolm, R.E. 1979. Effect of soil organic matter on peroxidase activity of wheat roots. Soil Biology and Biochemistry, 11(1): 57-63.
  52. Walkley, A., and Black, I.A. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1): 29-38.
  53. Whalen, J.K., Chang, C., and Olson, B.M. 2001. Nitrogen and phosphorus mineralization potentials of soils receving repeated annual cattle manure applications. Biology and Fertility of Soils, 34: 334-341.
  54. Xie, R.J., OHalloran, I.P., Mackenzie, A.F., and Fyles, J.W. 1993. Phosphate sorption and desorption as effected by addition sequences on ammonium lignosulphonate and diammonium phosphate in a clay soil. Canadian Journal of Soil Science, 73: 275-285.
  55. Zhen-Yu, D.U., Qing-Hua, W.A.N.G., Fang-Chun, L.I.U., Hai-Lin, M.A., Bing-Yao, M.A., and Malhi, S.S. 2013. Movement of phosphorus in a calcareous soil as affected by humic acid. Pedosphere 23(2): 229-235.
  56. Zhou, D. 2011. An in-vitro model of calcium phosphate mineralization in bone: transformation from amorphous calcium phosphate to apaptite. (Thesis (M.S.) Central Michigan University.