نوع مقاله : کاربردی

نویسندگان

1 دانشجوی سابق کارشناسی ارشد گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران.

2 استادیار گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران.

3 استادیار گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران

4 استادیار گروه مهندسی مکانیک بیوسیستم، دانشکده مهندسی زراعی و عمران روستایی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان

چکیده

نیتروژن یکی از عناصر اصلی مورد نیاز گیاه می باشد و بیشتر از سایر عناصر در تغذیه گیاهی مصرف می شود. نیتروژن جزء مهمی از ملکول کلروفیل را تشکیل می‌دهد و در ساختمان کلروفیل بصورت پروتئین وجود دارد. بدون نیتروژن رشد گیاه به مقدار بسیار زیادی کاهش می‌یابد. این تحقیق به منظور برآورد مقدار نیتروژن و کلروفیل برگ گیاه نیشکر از روی شاخص های رنگی استخراج شده از تصاویر هوایی دیجیتال که توسط کوادکوپتر از دو ارتفاع ۵ متر و ۱۰ متر و در مزارع شرکت کشت و صنعت دعبل خزاعی گرفته شدند، انجام گرفت. تصاویر استفاده شده برای این تحقیق از سه مزرعه با دوره های رشد مختلف بودند. همزمان با تصویر برداری، میزان کلروفیل برگ نیشکر در نقاط مشخص شده نیز با کلروفیل متر دستی تعیین گردید، همچنین نمونه برداری از مزارع برای تعیین مقدار واقعی نیتروژن به روش کلدال انجام شد. نتایج آزمایشات، پردازش تصاویر و مدلسازی رگرسیونی نشان داد که معادلات رگرسیونی می‌توانند برای دو ارتفاع ۵ و ۱۰ متر به ترتیب میزان نیتروژن را با ضرایب تبیین 3/74 و ۷7 درصد؛ و کلروفیل را با ضرایب تبیین ۶۲ و ۶۹ درصد برآورد کنند. همچنین مدل رگرسیونی ارائه شده برای تخمین میزان نیتروژن گیاه نیشکر از روی کلروفیل برگ دارای ضریب تبیین ۶۸ درصد بود. با توجه به نتایج بدست آمده در این تحقیق با تعیین ارتباط بین نیتروژن و رنگ گیاه می‌توان از وضعیت نیتروژن و کلروفیل گیاه نیشکر آگاه شد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

The determination of Nitrogen Content and Chlorophyll of Sugarcane Crop using Regression Modelling from Color Indices of Aerial Digital Images

نویسندگان [English]

  • Seyedeh Arefeh Hosseini 1
  • Hassan Masoudi 2
  • Seyed Majid Sajjadiyeh 3
  • Saman Abdanan Mehdizadeh 4

1 Former M.Sc. student, Department of Biosystems Engineering, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

2 Assistant professor, Shahid Chamran University of Ahvaz

3 Assistant professor, Department of Biosystems Engineering, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran

4 Assistant professor, Department of Mechanics of Biosystems Engineering, Khuzestan Agricultural Sciences and Natural Resources University, Mollasani, Khuzestan, Iran.

چکیده [English]

Introduction Nitrogen is one of the essential elements for plants and is consumed more than other elements in plant nutrition. Nitrogen is an important component of the chlorophyll molecule and is present in the chlorophyll structure as a protein. Without nitrogen, plant growth decreases significantly. This research was carried out to estimate the amount of nitrogen and chlorophyll of sugarcane leaves from color indices extracted from digital aerial images taken by a quad-copter at two 5 and 10 m altitudes in the fields of Debal Khozaie sugarcane agro-industry company, Khuzestan, Iran. The images used for this research are from three farms with different growth stages.
Materials and Methods The imaging was carried out using a quad-copter, the Phantom 3 professional model, at two heights (5 and 10 meters) from the specified points in the fields. After taking the photos from all marked points by the quad-copter camera, four healthy cane branch - with 45 cm distance from each other - were picked at each point and placed in plastic bags. Then, samples were immediately transferred to the laboratory to measure the leaf chlorophyll value, moisture content and the amount of nitrogen. Using a hand-held chlorophyll meter (SPAD-502 model), the leaf chlorophyll index was measured and recorded at each point. After drying the samples, the nitrogen levels were measured using the manual Kjeldahl method. The designed image processing algorithm, to extract color indices from sugarcane fields' images, had these steps: image transfer, preprocessing, image smoothing, noise, and background removal, extracting and selecting of image attributes. After using the image processing algorithm, the color indices of the fields' images were obtained; then the relationship between color indices and nitrogen and chlorophyll content of sugarcane leaves were determined using multivariate regression. The preparation of the data was done in Excel 2013 software and the development of multiple regression equations in SPSS v.21 software. The student t-test was used to compare the performance of regression models in the prediction of nitrogen and chlorophyll content with real values.
Results and Discussion Based on the results of the measurements, the dispersion of nitrogen was not uniform throughout and between the fields. The least nitrogen dispersion was in the first growth period and the greatest one in the second growth period. None of the fields had uniform dispersion in the chlorophyll content. The least dispersion was observed in the second growth period and the highest dispersion in the third growth period. Based on the Pearson correlation statistical analysis - from 48 features extracted by image processing including mean, variance, skewness, and peak value of each image color indices in RGB, HSV, HIS, and Lab color spaces - only 24 features were selected to determine the regressions equations. These indices had a correlation with the amount of nitrogen in sugarcane leaves. In the images of 5 meters height, the obtained regression equation for nitrogen estimation was significant at 1% probability level and had a 74.3% determination factor. The determination factor of the five regression equations presented for the images taken from 10 m height were 71, 74, 77, 79, and 82 percent. Also, all the regression equations were significant at 1% probability level, so these relationships are valid and can be used to estimate the amount of nitrogen in sugarcane from 10 m height. By increasing the number of color indices, the accuracy of the regression model in the estimation of nitrogen levels was increased. Accuracy of the 10 m regression model for estimating the amount of nitrogen in sugarcane was higher than the 5 m regression model. All four regression models presented for estimating the chlorophyll of leaf based on color indices of images taken from 5m height were significant at 1% probability level. The obtained determination coefficients for these models were 26, 45, 55, and 62%. By increasing the number of color indices, the accuracy of the regression model was increased for the estimation of chlorophyll content of the leaf. Also, the presented regression model for the estimation of leaf chlorophyll based on color indices obtained from 10 m height images was significant at 1% probability level. The determination factor for this model was 69%, which is more than the determination factor of the most accurate regression model presented for 5m height images. The regression model presented for estimating the sugarcane nitrogen content from leaf chlorophyll was significant at 1% probability level. The amount of determination factor for this model was 68%, which is very close to the amount reported by the Debal Khozaie sugarcane agro-industry company, Khuzestan, Iran.
Conclusion Thecomparison of the results of regression equations with real values showed that nitrogen prediction with regression model for 5 m height images and two regression models for 10 m height images had no significant difference with each other. Also, the results of sugarcane nitrogen estimation using the leaves chlorophyll was not significantly different from the actual nitrogen content of leaves. On the other hand, chlorophyll prediction was performed by two regression models for 5 m height images and the regression model for 10 m height images were not significantly different from the actual amount of leaves chlorophyll. Therefore, the presented regression equations are valid and reliable and using these relationships can help know the state of nitrogen and chlorophyll in sugarcane fields. 

کلیدواژه‌ها [English]

  • Sugarcane
  • Nitrogen content
  • Leaf chlorophyll
  • Kjeldahl test
  • Digital aerial images
  • Regression equations
  1. Abdolahzare, Z., and Abdanan Mahdizadeh, S. 2018. Nonlinear mathematical modeling of seed spacing uniformity of a pneumatic planter using genetic programming and image processing. Neural Computing and Applications, 29(2): 363-375.
  2. Ahmadi Moghaddam, P., Haddad Darafshi, M. A., and Shayesteh, M. 2009. Laboratory estimation of sugar beet leaf nitrogen status by color image processing. Journal of Agricultural Science and Sustainable Production, 19(1): 189-199. (in Persian with English abstract)
  3. Aliabasi, H. R., Esfahani, M., Kavoosi, M., and Rabiee, B. 2005. Determination of nitrogen requirement at different growth stages of rice (Oryza sativa Cv. Khazar) using chlorophyll meter. Iranian Journal of Crop Sciences, 7(2): 134-145. (in Persian with English abstract)
  4. Anonymous. 2016. Guide to Kjeldahl Nitrogen Determination Methods and Apparatus, LABCONCO, an Industry Service Publication, Houston, Texas 77099, USA. 97
  5. Bagheri, N. 2015. Development of a spectrograph unmanned aerial vehicle for aerial imaging of agricultural farms. Natural Geographic Researches, 47(4): 533-546. (in Persian with English abstract)
  6. Bavi, A., and Mostofizadeh, M. 2012. Estimation of leaf nitrogen in different varieties of sugarcane using chlorophyll meter. 1st national symposium of farming in difficult environmental conditions, 11 May 2012, Islamic Azad University, Ramhormoz Branch. Ramhormoz, Khuzestan, Iran. (in Persian)
  7. Biabi, H., Abdanan, S., Nadafzadeh, M., and Salehi Salmi, M. R. 2019. Designing and developing a machine vision system to predict the chlorophyll and carotenoid content of plant leaves. Journal of Agricultural Machinery, 9(2). https://doi.org/10.22067/jam.v9i2.71716 (in Persian with English abstract)
  8. Cassman, K. G., Kropff, M. J., and Yan, Z. D. 1993. A conceptual framework for nitrogen management of irrigated rice in high–yield environments. In: proceedings of international rice research conference. International Rice Research Institute, Los Banos, Philippines.
  9. Esfandiari, A., Rangzan, K., Nasseri, A., Taghizadeh, A., Al-Kathir, J., and Habibian, M. 2013. Modeling and estimation of sugarcane nitrogen percentage using Fieldspes3 spectrometer and Hyperion spectral image. The 20th Conference on Mapping and Geospatial Information (Geomatics 92) 29-30 April 2013, Mapping Organization of Iran. (in Persian)
  10. Gonzalez, R. C., Woods, R. E. & Eddins, S. L. 2004. Digital image processing using MATLAB. Pearson Education India.
  11. HunterLab. 2001. Application note. Insight on Color. 13, pp. 1-4.
  12. Hosseini, S. A. 2017. Estimation of nitrogen status of crop in sugarcane fields using aerial digital images and artificial neural networks. M.Sc. Thesis in Mechanics of Biosystems Engineering, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Iran. (in Persian).
  13. Jia, B., He, H., Ma, F., Diao, M., Jiang, G., Zheng, Z., Cui, J., and Fan, H. 2014. Use of a digital camera to monitor the growth and nitrogen status of cotton. The Scientific World Journal, Article ID 602647, DOI: 10.1155/2014/602647.
  14. Luzuriaga, D. A. and Balaban, M. O. 2002. Colour machine vision system: an alternative for colour measurement. In Proceedings of the world congress of computers in agriculture and natural resources, Iguacu Falls, Brazil. 13–15 March. pp. 93–100.
  15. Li, Y., Chen, D., Walker, C. N., and Angus, J. F. 2010. Estimating the nitrogen status of crops using a digital camera. Field Crops Research, 118: 221-227.
  16. Majidi, A. S. 2014. Use of Minolta 502SPAD chlorophyll meter for estimating nitrogen concentration of leaf and grain protein in three wheat cultivars, Soil Researches Journal (Soil and Water Sciences), 28(2): 245-254. (in Persian with English abstract)
  17. Muñoz-Huerta, R. F., Guevara-Gonzalez, R. G., Contreras-Medina, L. M., TorresPacheco, I., Prado-Olivarez, J., and Ocampo-Velazquez, R. V. 2013. A review of methods for sensing the nitrogen status in plants: advantages, disadvantages and recent advances. Sensors, 13: 10823-10843.
  18. Radmoghaddam, M. 2011. Evaluation of the nitrogen state of spinach plant using chlorophyll index and image processing based on artificial neural network. M. Sc. Thesis. Faculty of Agriculture, University of Tabriz. (in Persian)
  19. Shaki, F., Bernard, F., Darvishzadeh, R and Dashti Ahangar, A. 2013. Estimation of Nitrogen Content in Soybean Using Remote Sensing. Geographical Researches Quarterly Journal, 45(20): 109-124.
  20. Sharifi, M., and Haj Abbasi, M. A. 2005. Investigating the Possibility of Using Direct Distillation Method to Measure total Nitrogen of Soil. 9th Iranian Soil Science Congress, 28-31 August 2005, Tehran, Iran. (in Persian)
  21. Wang, Y., Wang, D., Zhang, G., and Wang, J. 2013. Estimating nitrogen status of rice using the image segmentation of G-R thresholding method. Field Crops Research, 149: 33–39.
  22. Zhou, H., Wu, J. and Zhang, J. 2014. Digital Image Processing. Translated by: Akbarizadeh, Gh., Sepehre Danesh Publishing Co., Hamedan, Iran. (in Persian).