نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه علوم و مهندسی خاک ، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران

2 استاد، گروه علوم و مهندسی خاک، دانشکده کشاورزی دانشگاه ارومیه، ارومیه، ایران

چکیده

گیاه­پالایی راهکار مناسبی برای پالایش خاک­های آلوده به فلزات سنگین است. هدف از این پژوهش بررسی توانایی گیاه­پالایی سرب توسط افسنتین (Artemicia absantium L.) و توق (Xanthium strumarium L.) در یک خاک آهکی آلوده بود. این پژوهش در شرایط گلخانه­ای بصورت آزمایش فاکتوریل، در قالب طرح بلوک­های کامل تصادفی و در سه تکرار در گلخانه گروه علوم خاک دانشگاه ارومیه انجام شد. بدین منظور یک نمونه خاک انتخاب و به­طور یکنواختی با غلظت­های مختلف سرب (صفر، 250، 500 و 1000 میلی­گرم بر کیلوگرم خاک) آلوده شد. سپس کشت گیاهان در خاک آلوده انجام شد (24 گلدان). در پایان دوره رشد، وزن خشک ریشه و شاخساره، غلظت سرب در ریشه و شاخساره گیاهان و سرب زیست­فراهم خاک اندازه­گیری شد. همچنین، شاخص­های گیاه­پالایی محاسبه شدند. نتایج نشان داد با افزایش آلودگی سرب در خاک، وزن خشک ریشه و شاخساره و تحمل گیاهان کاهش یافت، در حالی­که غلظت سرب ریشه و شاخساره، سرب تثبیت شده در ریشه و سرب استخراج شده توسط شاخساره گیاهان، افزایش یافت. بین شاخص تحمل دو گیاه تفاوت معنی­داری (05/0P≤) وجود نداشت. نتایج همچنین نشان داد اندوزش سرب در ریشه توق (میانگین mBAF و mBCF ریشه و mTF به­ترتیب 65/1 درصد، 48/5 و 97/0) بیش­تر از افسنتین بود. در حالی­که اندوزش سرب در شاخساره افسنتین (میانگین mBAF، mBCF شاخساره و mTF به­ترتیب 79/2 درصد، 86/2 و 84/1) بیش­تر بود. بنابراین می­توان نتیجه­گیری کرد توق و افسنتین به­ترتیب در تثبیت گیاهی و استخراج گیاهی سرب در خاک­های آلوده (بویژه در سطوح 250 و 500 میلی­گرم بر کیلوگرم) موثر باشند.  

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

The assessment of the potential of two rangeland plants for absorption and accumulationof lead (Pb) in a contaminated calcareous soil

نویسندگان [English]

  • Neda Moradi 1
  • Mir Hassan Rasouli-Sadaghiani 2

1 Assistant professor, Department of Soil Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

2 Professor, Department of Soil Science, Faculty of Agriculture, Urmia University, Urmia, Iran.

چکیده [English]

Introduction Recently, due to the enhancement of industrialization, urbanization, and disposal of wastes, fertilizers, and pesticides the concentration of heavy metals in agricultural soil has increased. Heavy metals are a serious threat to the environment due to their hazardous effects. Heavy metal contamination of the soil is of particular attention due to food security issues and several reported health risks to both human and living organisms. In addition, large areas worldwide are polluted by lead (Pb). One of the major problems in the process of Phytoremediation is the low solubility of heavy metals, such as lead in the contaminated soil. Phytoextraction is a solar-driven remediation technology which greatly reduces the costs and has minimum adverse side effects. Lead (Pb) is among the highly toxic and most common heavy metals at contaminated sites. It originates from various anthropogenic sources and causes a variety of health, environmental, and ecological problems. The weed plant species are usually of the quickly growing nature and have higher biomass under unfavorable environments. Their phytoremediation potential could be more effective in reducing food chain contamination and consequently the risk to human health. Therefore, the objective of this study was to assess the Pb remediation potential of Artemisia (Artemisia absinthium L.) and Xanthium (Xanthium strumarium L.) in contaminated calcareous soil.
Materials and Methods This study was carried out under a greenhouse condition as a factorial experiment based on a randomized complete block design with two factors, including Pb concentration in four levels (0, 250, 500, and 1000 mg Pb kg-1 soil) and plant type in two levels of Artemisia (Artemisia absanthium L.) and Xanthium (Xanthium strumarium L.) and in three replications. In this study, the soil was selected and was spiked with 0, 250, 500, and 1000 mg Pb kg−1 soil.  Then plants were grown in pots containing the contaminated soil. At the end of the growth period, the dry weight of root and shoot, Pb concentration in the root and shoot of plants, and soil bioavailable Pb were measured. Also, the tolerance index (TI) of root and shoot was calculated by dividing the dry biomass of plant in each treatment by dry biomass in the control treatment at Pb0 mg kg-1 of the soil. Moreover, the stabilized Pb in roots (MS) and extracted Pb by shoots (ME) were calculated. For evaluating the ability of plants on uptake and shoot and root accumulation of Pb, mBCF (Modified bioaccumulation factor) and mBAF (bioconcentration factors) of shoot and root were calculated by dividing the Pb concentration in plant dry matter to bioavailable Pb concentration in soil and dividing the Pb accumulation in the plant fraction bioavailable metal content in the soil. In addition, the modified translocation factor (mTF) was calculated by dividing the Pb concentration in shoot dry matter by Pb concentration in root dry matter.  
Results and Discussion Results of this study indicated that with increasing soil Pb contamination, the root and shoot dry weight and tolerance index of plants decreased, while shoot and root Pb concentration, stabilized Pb in roots and the extracted Pb from shoots increased. The highest and lowest relative shoot and root dry weight were observed in Pb0 and Pb1000 treatments, respectively. There was no significant difference in the tolerance index (TI) of plants. In this study, roots and shoots mBCF, obtained for both plants and different levels of Pb in soil, were above unity, indicating that the plant is able to take up and accumulate Pb. A. absanthium PGPR had higher mTF than X. strumarium plant at every concentration of soil Pb. The assessment of the phytoremediation performance clearly revealed that the amounts of all phytoextraction indices in A. absanthium were higher than X. strumarium, while all phytostabilization indices in X. strumarium were higher than X. strumarium.  In general, maximum Pb accumulation for root was recorded for X. strumarium (average of root mBAF, mBCF, and mTF 1.65 %, 5.48 and 0.97, respectively) and maximum accumulation of Pb in shoot was observed for A. absantium (average of shoot mBAF, mBCF, and mTF 2.79 %, 2.86, and 1.84, respectively).
Conclusion It could be concluded that X. strumarium and A. absanthium, with high biomass in native condition, might be effective in phytostabilization and phytoextraction of Pb, respectively, especially in low levels of soil Pb contamination (250 and 500 mg kg-1). 

کلیدواژه‌ها [English]

  • Lead contamination
  • Phytoextraction
  • Phytostabilization
  • Biomass
  • Heavy metals
  1. Alaribe, F.O. and Agamuthu, P., 2015. Assessment of phytoremediation potentials of Lantana camara in Pb impacted soil with organic waste additives. Ecological Engineering, 83: 513-520.
  2. Ali, H., Khan, E., and Sajad, M.A. 2013. Phytoremediation of heavy metals— concepts and applications. Chemosphere, 91: 869–881.
  3. Barbosa, B., Boléo S, Sidella, S., Costa, J., Duarte, M.P., Mendes, B., Cosentino, S.L., and Fernando, A.L. 2015. Phytoremediation of Heavy Metal-Contaminated Soils Using the Perennial Energy Crops Miscanthus spp. and Arundo donax L. BioEnergy Research, 8: 1500-1511.
  4. Boussen, S., Soubrand, M., Bril, H., Ouerfelli, K., and Abdeljaouad, S. 2013. Transfer of lead, zinc and cadmium from mine tailings to wheat (Triticum aestivum) in carbonated Mediterranean (Northern Tunisia) soils. Geoderma, 192: 227–236.
  5. Businelli, D., Massaccesi, L., and Onofri, A. 2009. Evaluation of Pb and Ni mobility to ground water in calcareous urban soils of Ancona, Italy. Water Air Soil Pollution, 201: 185-193.
  6. Cariny, T., 1995. The reuse of contaminated land. John Wiley and Sons Ltd. Publisher, 219 p.
  7. Carter, M.R. and Gregorich, E.G. 2008. Soil sampling and methods of analysis (2nd ed). CRC Press. Boca Raton. FL, 1204 p.
  8. Gupta, R.K. 2000. Soil, plant, water and fertilizer analysis. Agrobios, New Delhi, India, 438 p.
  9. Houben, D., Evrard, L., and Sonnet, P. 2013. Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Znand the biomass production of rapeseed (Brassica napus L.). Biomass and Bioenergy, 57: 196–204.

10.Huang, H., Li, T., Gupta, D.K., He, Z., Yang, X., Ni, B., and Li, M., 2012. Heavy metal phytoextraction by Sedum alfredii is affected by continual clipping and phosphorus fertilization amendment. Journal of Environmental Sciences, 24(3): 376– 386.

11.Jalili, A. and Jamzad, Z. 1999. Red data book of Iran. Research Institute of Forests and Rangelands (RIFR) Publication, Tehran, Iran. 748 p.

 12.Jiang, W. and Liu D. 2010. Pb-induced cellular defense system in the root meristematic cells of Allium sativum L. BMC Plant Biology, 10: 40–40.

 13.Kabata-Pendias, A. 2011. Trace elements in soils and plants, 4th end. CRC, Boca Raton. 534 p.

 14.Karimi A, Khodaverdiloo H, Sepehri M, and Rasouli Sadaghiani M.H. 2011. Arbuscular mycorrhizal fungi and heavy metal contaminated soils. African Journal of Microbiology Research, 5: 1571- 1576.

15.Karimi, A., Khodaverdiloo, H. and Rasouli Sadaghiani, M.H. 2013. Enhanced soil Pb extraction by Acroptilon (Acroptilon repens) through inoculation with some arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria. Journal of Water and Soil Conservation, 20(3): 193-210.

16.Karimi, A., Khodaverdiloo, H., and Rasouli Sadaghiani, M.H. 2017. Plant tolerance, accumulation and remediation of Pb by three rangeland plant species in a calcareous soil in west Azerbaijan province. Journal of Natural Environment (Iranian Journal of Natural Resources), 70(4): 907-922.

17.Karimi, A., Khodaverdiloo, H., and Rasouli Sadaghiani, M.H. 2018. Microbial Enhanced Phytoremediation of Lead Contaminated Calcareous Soil by Centaurea cyanus L. CLEAN–Soil, Air, Water, 46(2): 1-9.

 18.Khodaverdiloo, H., Ghorbani Dashtaki, Sh., and Rezapour, S. 2011. Lead and cadmium accumulation potential and toxicity threshold determined for land cress (Barbarea verna) and spinach (Spinacia oleracea L.). International Journal of Plant Production, 5: 275-281.

19.Khodaverdiloo, H., Rahmanian, M., Rezapour, S., Ghorbani Dashtaki, Sh., Hadi, H., and Han, F.X., 2012. Effect of wetting-drying cycles on redistribution of lead in some semi-arid zone soils spiked with a lead salt. Pedosphere, 22: 304–313.

 20.Khodaverdiloo, H. and Hamzenejad Taghlidabad, R. 2014. Phytoavailability and potential transfer of Pb from a salt-affected soil to Atriplex verucifera, Salicornia europaea and Chenopodium album. Chemistry and Ecology, 30(3): 216-226.

21.Laghlimi, M., Baghdad, B., Hadi, H.E., and Bouabdli. A. 2015. Phytoremediation Mechanisms of Heavy Metal Contaminated Soils: A Review. Journal of Ecology, 5: 375-388.

22.Langer, I., Krpata, D., Fitz, W.J., Wenzel, W.W., and Schweiger, P.F. 2009. Zinc accumulation potential and toxicity threshold determined for a metal accumulating Populus canescens clone in a dose–response study. Environmental Pollution, 157: 2871-2877.

 23.Mahdavian, K., Ghaderian, S.M., and Torkzadeh-Mahani, M. 2015. Accumulation and phytoremediation of Pb, Zn, and Ag by plants growing on Koshk lead–zinc mining area, Iran. Journal of Soils and Sediments, 1–11.

 24.Mahmood, T. 2010. Phytoextraction of Heavy Metals- The Process and Scope for Remediation of Contaminated Soils. Soil and Environment, 29: 91-109.

25.McLaughlin, M.J., Hamon, R.E., McLaren, R.G., Speir, T.W., and Rogers, S.L. 2000. Review: a bioavailability-based rationale for controlling metal and metalloid contamination of agricultural land in Australia and New Zealand. Australian Journal of Soil Research, 38: 1037–1086.

26.Moreira, H., Marques, A., Rangel, A., and Castro, P.M.L. 2011. Heavy metal accumulation in plant species indigenous to a contaminated Portuguese site: Prospects for phytoremediation. Water Air Soil Pollution, 221: 377–389.

27.Nsanganwimana, F., Marchland, L., Douay, F., and Mench, M. 2014. Arundo donax L., a candidate for phytomanaging water and soils contaminated by trace elements and producing plant-based feedstock, a review. International Journal of Phytoremediation, 16: 982–1017.

  1. Placek, A., Grobelak, A., and Kacprzak, M. 2016. Improving the phytoremediation of heavy metals contaminated soil by use of sewage sludge. International Journal of Phytoremediation, 18(6): 605-618.
  2. Saghi, A., Rashed Mohassel, M.H., Parsa, M., and Hammami, H. 2016. Phytoremediation of lead contaminated soil by Sinapis arvensis and Rapistrum rugosum. International Journal of Phytoremediation, 18(4): 387-392.
  3. Sahmurova, A., Celik, M., and Allahverdiyev, S. 2010. Determination of the accumulator plants in Kucukcekmece Lake (Istanbul), African Journal of Biotechnology, 9: 6545-6551.
  4. Sainger, P.A., Dhankhar, R., Sainger, M., Kaushik, A., and Singh, R.P. 2011. Assessment of heavy metal tolerance in native plant species from soils contaminated with electroplating effluent. Ecotoxicology and Environmental Safety, 74(8): 2284– 2291.
  5. Salas-Luévano, M.A., Manzanares-Acu˜na, E., Letechipía-de León, C., and VegaCarrillo, H.R. 2009. Tolerant and hyperaccumulators autochthonous plant species frommine tailing disposal sites. Asian Journal of Experimental Sciences, 23(1): 27– 32.
  6. Sharma, P. and Dubey, R.S. 2005. Lead Toxicity in plants. Plant Physiology. 17, 35- 52.
  7. Singh, S., Fulzele, D.P., and Kaushik, C.P. 2016. Potential of Vetiveria zizanoides L. Nash for phytoremediation of plutonium (239Pu): chelateassisted uptake and translocation. Ecotoxicology and Environmental Safety, 132:140–144.
  8. Sipos, P., Németh, T., Kovacs Kis, V., and Mohai, I., 2008. Sorption of Cu, Zn and Pb on soil mineral phases, Chemosphere, 73: 461-469.
  9. Solhi, S., Solhi, M., Sief, A., Hajabassi, M.A., and Shariatmadari, H. 2012. Metal extraction of some native plant species in contaminated sites of Iran. International Research Journal of Applied and Basic Sciences, 3(3): 568-575.

37.Tauqeer, H.M., Ali, S.H., Rizwan, M., Ali, GH. Saeed, R. Iftikhar, U., Rehan Ahmad, R., Farid, M., and Abbasi. G.H. 2016. Phytoremediation of heavy metals by Alternanthera bettzickiana: Growth and physiological response. Ecotoxicology and Environmental Safety, 126: 138-146.

 38.Wu, G., Kang, H., Zhang, X., Shao, H., Chu, L., and Ruan, C., 2010. A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, ecoenvironmental concerns and opportunities. Journal of Hazardous Materials, 173: 1–8.

39.Yang, W., Li, H., Zhang, T., Lin Sen, L., Ni, W. 2014. Classification and identification of metal-accumulating plant species by cluster analysis. Environmental Science and Pollution Research, 21(18): 10626-10637.