پیش‌بینی و تعیین پارامترهای موثر بر پراکنش حلزون‌های خاکزی با استفاده از مدل-های خطی و غیر خطی در اکوسیستم جنگلی

نوع مقاله : کاربردی

نویسندگان

1 گروه خاک- دانشکده کشاورزی- گروه حاکشناسی

2 دانشگاه صنعتی اصفهان

3 3. کارشناس ارشد گروه انگل شناسی دانشکده دامپزشکی دانشگاه سمنان

چکیده

حلزون­های خاکزی، بخش مهمی از اکوسیستم جنگل را شامل می­شوند و نقش مهمی در تجزیه لاش‌برگ و غلظت کلسیم خاک دارند. این مطالعه با هدف بررسی ویژگی­های خاک و پارامترهای توپوگرافی موثر بر فراوانی حلزون­های خاکزی و هم‌چنین پیش­بینی پراکنش فراوانی آن‌ها دربخشی از اراضی جنگلی استان گلستان آن‌جام گردید. تعداد 153 نمونه خاک از عمق 0-10 سانتی­متر جمع­آوری شد؛  سپس حلزون­های خاکزی جمع­آوری و تاسطح رده شناسایی و طبقه‌بندی شدند. ویژگی­های خاک از طریق آنالیزهای آزمایشگاهی و پارامترهای توپوگرافی، با استفاده از نقشه رقومی ارتفاع منطقه و تصاویر ماهواره­ای به‌دست آمدند. بر طبق نتایج حاصل مدل غیر خطی جنگل تصادفی دارای ضریب تبیین 49/0 و خطا 82/1 است و دقت بالاتری نسبت به مدل رگرسیون خطی با ضریب تبیین 28/0 و خطا 13/2 در پیش­بینی فراوانی حلزون­ها دارد. نتایج به‌دست آمده از آنالیز مولفه­های اصلی و آنالیز حساسیت نشان دادند که کربنات کلسیم معادل، pH، EC و کربن آلی، از جمله مهم‌ترین ویژگی­های خاکی موثر بر فراوانی حلزون­ها هستند. پارامترهای توپوگرافی دارای روابط خطی با فراوانی حلزون­های خاکزی نداشته­اند اما در مدل غیر خطی به خوبی نقش آن‌ها نشان داده شده است. جهت شیب، ارتفاع و دمای سطح زمین از جمله مهم‌ترین پارامترهای تاثیرگذار بر فراوانی حلزون‌ها بوده­اند که احتمالا تاثیر آن‌ها به دلیل تاثیر بر ویژگی­های خاک مانند کربنات کلسیم و رطوبت خاک بوده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Prediction and determination of effective parameters on the abundance of soil snails using linear and nonlinear models in forest ecosystem

نویسندگان [English]

  • samaneh Tajik 1
  • shamsollah ayoubi 2
  • mohmmad mehdi darvisihi 3
  • hossein khademi 2
1 department of soil science, IUT
2 IUT
3 MSc, Department of Parasitology, Faculty of Veterinary Medicine, University of Semnan
چکیده [English]

Introduction Soil snails constitute an important part of the forest ecosystem and play an essential role in litter decomposition and soil calcium concentration. Snails are known as bioindicators because of narrow distribution, short lifetime, and high sensitivity (22, 24). The abundance and distribution of soil snails are dependent on different environmental conditions, such as precipitation, pH, soil calcium, and plant cover. Also, soil properties are mainly related to topographic parameters. Because ecosystem components have complex relationships, we need powerful models to find effective factors and spatial variations of the soil fauna (23). Linear Regression and random forest are popular and applicable models in soil science. Up to the present, no study has investigated the effect of soil parameters on snail abundance using linear regression and random forest. This study was performed to investigate the effect of soil properties and topographic parameters on the abundance of soil snails and their distribution in a part of forest area located in Bahramnia forest, an experimental site in Golestan Province, in the north of Iran.
Materials and Methods This study was conducted in Shast Kalate (Bahramnia) forest, an experimental forest of Gorgan University of Agricultural Sciences and Natural Resources, located at the eastern Caspian region, north of Iran (36° 43′ 27″ N latitudes, 54°24′ 57″ E longitudes). 153 soil samples were collected from 0-10 cm; then soil snails were gathered and classified into the Gastropoda taxonomic class group. Soil properties, such as Soil particle size distribution (clay, silt, and sand), soil pH, electrical conductivity (EC), calcium carbonate equivalent (CCE), soil organic carbon (OC), total nitrogen (TN), and Soil microbial respiration (Resp), were measured via laboratory analysis. Also, digital elevation model and satellite images were used to determine the topographic parameters, such as Elevation, slope, slope aspect (Aspect), land surface temperature (land temp) wetness index (WI) and normalized difference vegetation index (NDVI). We used linear regression and nonlinear random forest models for investigating linear and nonlinear relationships between soil properties, topographic parameters, and the abundance of soil snails. Likewise, sensitive analysis was done to find the importance of the input parameters.
Results and Discussion The PCA analysis showed that first and second components explain 38 and 21 percent of the variation. In the first component, EC, OC, TN, pH, and silt were the most variable, and in the second component CCE, Clay, OC, sand, and EC were the most important parameters. In both components, topographic parameters had no effect. The PCA graph showed that CCE, sand, and pH had the most correlation with snail abundance and EC, Resp, OC, and TN affected their abundance. The validation results of regression and random forest models showed that random forests have more accuracy (0.49) and low error (1.82). In addition, the sensitive analysis showed that CCE, pH, EC, OC, aspects, elevation, and land temp are the most important parameters on snail abundance. Different studies reported that pH and CCE are effective parameters on snail abundance (20, 17). Also, Ondina., et al. (27) reported that EC has an important effect on soil snail abundance. We hypothesize that topographic parameters affect soil snail nonlinearly and by affecting  soil properties. Aspect is one of the topographic parameters that, via an effect on land temperature, land cover, and pH (8), has an important role in soil snails. In this way, elevation, by affecting  pH, wetness, land temperature, OC, and TN, affects soil snail abundance (13). Land temperature is the other topographic parameter that is affected by aspect and elevation and had a significant effect on snail abundance by affecting  OC and wetness (17).
Conclusion Based on the results, nonlinear random forest model had more accuracy than linear regression in predicting snail abundance. Results showed that calcium carbonate equivalent, pH, EC, and organic carbon were the most effective soil priorities on snail abundance. There was no linear relation between soil properties and soil snails, but in the nonlinear model, we found their role. Aspect, elevation, and land temperature were the most effective parameters on snail abundance that probably affected soil properties, such as calcium carbonate and soil moisture.

کلیدواژه‌ها [English]

  • Soil properties
  • Topography
  • modeling
  • Regression
  • Random forest
  1. Alijani, Z. and Sarmadian, F. 2014. The role of topography in changing of soil carbonate content. Indian Journal Science Research, 6:263–271.
  2. Aravind, N. A., Rajashekhar, K. P. and Madhyastha, N. A. 2005. Species diversity, endemism and distribution of land snails of the Western Ghats, India. Records of Western Austraian Museum, 68:31–38.
  3. Bardgett, R. D. and van der Putten, WH. 2014. Belowground biodiversity and ecosystem functioning. Nature, 515:505–511.
  4. Breiman, L. 2001. Random forests. Machine Learning, 45:5–32.
  5. Bremner, J.M. and Mulvaney, C. S. 1982. Nitrogen—total (American Society of Agronomy, Soil Science Society of America).
  6. Camera, C., Zomeni, Z., Noller, J.S., Zissimos, A.M., Christoforou, I.C and Bruggeman, A., 2017. A high resolution map of soil types and physical properties for Cyprus: A digital soil mapping optimization. Geoderma, 285, 35–49.
  7. Carlsson, M. 1999. A method for integrated planning of timber production and biodiversity: a case study. Canadian Journal of Forest Research, 29:1183–1191.
  8. Chu, H., Xiang, X., Yang, J., Adams, J. M., Zhang, K., Li, Y. and Shi. Y. 2016. Effects of Slope Aspects on Soil Bacterial and Arbuscular Fungal Communities in a Boreal Forest in China. Pedosphere, 26:226–234.
  9. Coblentz, D.D. and Riitters, K. H. 2004. Topographic controls on the regional-scale biodiversity of the south-western USA. Journal of Biogeography, 31:1125–1138.
  10. Ehrlinger, J. 2014. ggRandomForests : Random Forests for Regression. Cleveland: Cleveland Clinic, (Breiman 2001).
  11. Gee, G. W. and Bauder, J. W. 1979. Particle Size Analysis by Hydrometer: A Simplified Method for Routine Textural Analysis and a Sensitivity Test of Measurement Parameters1. Soil Science Society of America Journal, 43:1004–1007.
  12. Gevrey, M., Dimopoulos, I and Lek, S., 2003. Review and comparison of methods to study the contribution of variables in artificial neural network models. Ecological Modelling, 160, 249–264.
  13. Griffiths, R. P., Madritch, M. D. and Swanson AK. 2009. The effects of topography on forest soil characteristics in the Oregon Cascade Mountains (USA): Implications for the effects of climate change on soil properties. Forest Ecology and Management, 257:1–7.
  14. Grunwald, S. 2016. Environmental soil-landscape modeling: Geographic information technologies and pedometrics (CRC Press). 159
  15. Gotmark, F., Von Proschwitz, T and Franc, N., 2008. Are small sedentary species affected by habitat fragmentation? Local vs. landscape factors predicting species richness and composition of land molluscs in Swedish conservation forests. Journal of Biogeography, 35, 1062–1076.
  16. Hattar, B. I. Taimeh, A.Y. and Ziadat, F.M. 2010. Catena Variation in soil chemical properties along toposequences in an arid region of the Levant. Catena, 83:34–45.
  17. He, X., Hou, E., Liu, Y. and Wen, D. 2016. Altitudinal patterns and controls of plant and soil nutrient concentrations and stoichiometry in subtropical China. Scientific Reports, 6:24261.
  18. Hengl, T., Heuvelink, G.B.M., Kempen, B., Leenaars, J.G.B., Walsh, M.G., Shepherd, K.D., Sila, A., MacMillan, R.A., De Jesus, J.M., Tamene, L and Tondoh, J.E., 2015. Mapping soil properties of Africa at 250 m resolution: Random forests significantly improve current predictions. PLoS One, 10, 4–7.
  19. Hesse, P. R. 1971. A Text Book of Soil Chemistry Analysis. John Murray Ltd. London.
  20. Hill, M. C. 2000. Methods and guidelines for effective model calibration. Building Partnerships, pp 1–10.
  21. Horsák, M., Tajovská, E. and Horsáková, V. 2017. Calcareous forest seepages acting as biodiversity hotspots and refugia for woodland snail faunas. Acta Oecologica, 82:16–22.
  22. Jenkinson, D. S. and Powlson, D. S. 1976. The effects of biocidal treatments on metabolism in soil—V: a method for measuring soil biomass. Soil biology and biochemistry, 8(3):209–213.
  23. Korboulewsky, N., Perez, G., and Chauvat, M. 2016. How tree diversity affects soil fauna diversity: A review. Soil Biology and Biochemistry, 94:94–106.
  24. Martin, K. and Sommer, M. 2004. Relationships between land snail assemblage patterns and soil properties in temperate-humid forest ecosystems. Journal of Biogeography, 31:531–545.
  25. Nelson, R. E. 1982. Carbonate and gypsum (American Society of Agronomy, Soil Science Society of America).
  26. Nunes, G. K. M. and Santos, S. B. dos. 2012. Environmental factors affecting the distribution of land snails in the Atlantic Rain Forest of Ilha Grande, Angra dos Reis, RJ, Brazil. Brazilian Journal of Biology, 72:79–86.
  27. Ondina, P., Mato, S., Hermida, J. and Outeiro, A. 1998. Importance of soil exchangeable cations and aluminium content on land snail distribution. Applied Soil Ecology, 9:229–232.
  28. Payero, J.O., Neale, C.M.U and Wright, J.L., 2004. Comparison of eleven vegetation indices for estimating plant height of alfalfa and grass. Applied Engineering in Agriculture, 20, 385–393.
  29. Sen, S., Ravikanth, G. and Aravind, N. A. 2012. Land snails (Mollusca: Gastropoda) of India: status, threats and conservation strategies. Journal of Threatened Taxa. 4:3029–3037.
  30. Sreenivas, K., Dadhwal, V.K., Kumar, S., Harsha, G.S., Mitran, T., Sujatha, G., Suresh, G.J.R., Fyzee, M.A and Ravisankar, T., 2016. Digital mapping of soil organic and inorganic carbon status in India. Geoderma, 269, 160–173.
  31. Tajik, S., Ayoubi, S. and Nourbakhsh, F. 2012. Prediction of Soil Enzymes Activity by Digital Terrain Analysis: Comparing Artificial Neural Network and Multiple Linear Regression Models. Environmental Engineering Science, 29:798–806.