نوع مقاله : کاربردی

نویسندگان

1 بخش تحقیقات فنی و مهندسی کشاورزی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان همدان، سازمان تحقیقات، آموزش و ترویج کشاورزی،

2 بخش تحقیقات جنگل‌ها و مراتع، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان همدان، سازمان تحقیقات، آموزش و ترویج کشاورزی، همدان، ایران.

چکیده

عملیات بوجاری از جمله فرآیندهای مهم برای افزایش درجه خلوص دانه‌هاست. تمیز کردن، اساسی‌ترین کار در یک ماشین بوجاری می‌باشد، که در آن ناخالصی‌ها از دانه‌های سالم جدا می‌شوند. در این پژوهش سه نوع سیستم بوجاری مختلف مورد بررسی قرار گرفت تا عملکرد آن‌ها بر روی بازده تمیزسازی بذر گندم آبی مورد مطالعه قرار گیرد. سیستم‌های بوجاری مورد نظر عبارت بودند از: 1- ماشین بوجاری به همراه ماشین پیش بوجاری آر ماشین (R-Machine) مدل ARS5000 ساخت ایران، 2- ماشین بوجاری به همراه ماشین پیش بوجاری رام صنعت (Ram-Sanat) مدل RAM200 ساخت ایران 3-ماشین بوجاری به همراه ماشین پیش بوجاری گلدسات (Gold-Saat) مدل GS100S ساخت آلمان. در این پژوهش اثر سیستم‌های مختلف بوجاری بر فاکتورهای مهمی از قبیل: توانایی هر سیستم در میزان تمیزسازی بذر گندم و درصد تلفات دانه سالم در تمامی خروجی‌های مختلف هر سیستم (شامل ماشین‌های پیش بوجاری و بوجاری)، بررسی شد. به منظور تحلیل نتایج از طرح پایه کاملاً تصادفی استفاده شده و میانگین‌ها با آزمون دانکن مقایسه شدند. نتایج تحلیل آماری داده‌ها نشان داد که بین میانگین‌های درصد خلوص نهایی (بازده) هر یک از سیستم‌های بوجاری اختلاف معنی‌داری مشاهده نگردید و درصد خلوص نهایی همه آن‌ها بیش‌تر از 98 درصد بود. نتایج نشان داد که میزان تلفات از خروجی استوانه مشبّک ماشین پیش بوجاری صفر بود ولی میزان تلفات گندم سالم برای سایر خروجی‌های هر سیستم (ماشین پیش بوجاری و ماشین بوجاری) در سطح احتمال 1 درصد معنی‌دار بود. به علاوه کمترین میزان تلفات گندم به سیستم بوجاری رام صنعت تعلق داشت.

کلیدواژه‌ها

عنوان مقاله [English]

The investigation and evaluation of three types of wheat cleaning systems in Hamedan

نویسندگان [English]

  • Mohammad Reza Bakhtiari 1
  • Ghasem Asadian 2

1 Agricultural Engineering Research Department, Hamedan Agricultural and Natural Resources Research and Education Center, AREEO, Hamedan, Iran.

2 Forests and Rangelands Research Department, Hamedan Agricultural and Natural Resources Research and Education Center, AREEO, Hamedan, Iran.

چکیده [English]

Introduction The cleaning operation is an important process to increase the seeds’ purity degree. Cleaning is the most fundamental task in a cleaning machine, which separates the impurities of the healthy seeds. In a research that was conducted by Chenari et al. (2013), The efficiency of three types of wheat cleaning machines, R-Machine, Cimbria, and Gold-Saat, was investigated. The results of the statistical analysis showed the Cimbia machine had the greatest cleaning efficiency (86.72%). The R-Machine and Gold-Saat had 80.64% and 81.59% total efficiency, respectively. In this study, the effects of three different cleaning machines were evaluated on the seed losses percentage and seed cleaning percentage of all outputs in various pre-cleaning and cleaning machines for cleaning wheat seeds.
Materials and Methods In this study, three types of various cleaning systems were investigated to study their performances on wheat cleaning rate in Hamedan Province. Generally, a cleaning system is constructed of 5 parts: (1) pre-cleaning machine, (2) cleaning machine, (3) Trieurs, (4) weighting system, (5). packaging system. In this study, the term  cleaning system refers to only the first and the second part of the cleaning system. The cleaning systems in the study were (Table 1): (1) R-Machine with pre-cleaning machine model ARS2000, made in Iran, (2) Ram-Sanat with pre-cleaning machine model RAM200, made in Iran, and (3) Gold-Saat with pre-cleaning machine model GS100S, made in Germany. Table 1 shows the characteristics of three different cleaning systems, containing cleaning and pre-cleaning machines. Fig. 1 shows a schematic of the inputs and outputs of the wheat cleaning system (containing pre-cleaning and cleaning machines with Trieurs). Some factors were considered and determined as the following: (1) theoretical and practical capacity in ton/ha: based on the factory’s manual, the theoretical capacity for pre-cleaning machine and cleaning machine were 20 and 5 tons/ha, respectively; whereas, the practical capacity was calculated 2.2 tons/ha for total system (pre-cleaning machine and cleaning machine); (2) purity percentage of wheat input: this factor was determined for the pre-cleaning machine as follows:
purity percentage of healthy seeds input = (weight of healthy seeds / total weight) × 100;
(3) loss percentage of all outputs in the pre-cleaning machine, loss percentage of all outputs in the cleaning machine, and the total loss percentage of the system, as below:
Loss percentage of each of output on the cleaning system = (weight of lost seeds / total weight) × 100.
A completely randomized design was used in the research and Duncan’s test was used to compare the means results.
Results and Discussion Table 2 shows the means of different parts of cleaning systems (containing pre-cleaning and cleaning machines) by Duncan’s method. Thus:

Pre-Cleaning Machine:
Wheat input impurity or purity percentage: Table 2 indicates non-significant differences between wheat input impurity and purity percentage as affected by various wheat input to the cleaning system.
Loss percentage in the second suction of the pre-cleaning machine: Table 2 indicates significant differences between loss percentage in the second suction of the pre-cleaning machine. The maximum loss percentage belonged to Ram-Sanat, and the Gold-Saat had the minimum amount.
Cleaning Machine:
Loss percentage in suction: the result shows significant differences between loss percentage in primary and final suction of the cleaning system.
Loss percentage in sieves of the cleaning machine: Table 2 indicates significant differences between loss percentage in the top of the upper sieve and below th downer sieve of the cleaning machine.
Loss percentage in barely cleaning and semi-wheat cleaning parts: based on Table 2, a significant difference between them is observed.
The maximum losses belonged to Ram-Sanat, and the R-Machine had the minimum amount.
Cleaning System (Pre-Cleaning and Cleaning Machine Combination):
Purity percentage of wheat output (last purity): the results of the analysis of the variance show that all cleaning machines have the seed final purity percentage greater than 98%.
Total loss percentage of the system: the results show that the total loss percentage of Gold-Saat, R-Machine and Ram-Sanat are 6.04%, 2.97% and 4.4%, respectively.

Also, the results show that seed loss is zero for meshed cylinder, but the wheat loss of pre-cleaning and cleaning machines for all outlets is significant (p < 1%). These results are in agreement with Safarzadeh, (1993) and Jilanchi et al., (1997).
Conclusion The results show that all three cleaning machines have the final purity seed percentage greater than 98%, and also the minimum wheat loss (3.0%) belonged to Ram-Sanat cleaning machine. The R-Machine and Gold-Saat had 4.4% and 6.0% total loss.

کلیدواژه‌ها [English]

  • Wheat seed
  • Losses
  • Cleaning machine
  • Purity percentage
  1. Ahmadi, A., Yazdi Samadi, B., and Zargarnataj, J. 2004. The effects of low temperature on seed germination and seedling physiological traits in three winter wheat cultivars. Journal of Agricultural Sciences and Natural Resources, 11 (2): 117-126. (in Persian)
  2. Alipanah, A. and Saki, A. A. 2004. Effect of wheat screening in broiler performance. in First Congress of Animal Science and Aquaculture Country. Buali Sina University. Hamedan. (in Persian)
  3. Anonymous. 2001. Workmanship of seed cleaning machine ARS5000 model: R-Machine Company, Iran.
  4. Chenari, M., Shahidzadeh, M., and Javadi, A. 2013. Evaluation and determination of cleaning machine efficiency for wheat seed. Journal of Agricultural Engineering Research, 14 (2): 69-80. (in Persian)
  5. Dreszer, K.A. and Gieroba, J. 1999. Mechnical damage to grain in multidrum threshing and separation sets. Int. Agrophysics, 13: 73-78.
  6. Golian, A. and Parsaei, C. 1996. The use of wheat grain screen in the nutrition of laying hens. Iranian Journal of Agricultural Science, 27 (3): 105-114. (in Persian)
  7. Hall, C. W., and Davis, D. C. 1979. Processing equipment for agricultural products. AVI Publishing Co., Inc. Westport, Connecticut.
  8. Jilanchi, K.A.A., Shivaei Khalaj, M., and Kashfi, S.M. 1997. Cleaning machine and antiseptic Petkus 200 model: Center of Agricultural Machine Test in Karaj. (in Persian)
  9. Jorge, M.H.A. and Ray, D.T. 2005. Germination characterization of guayule seed by morphology, mass and, X-ray and analysis. Industrial Crops and Products, 22 (1): 59-63.
  10. Khan, M.L. 2003. Effects of seed mass on seedling success in Artocarpus heterophyllus L. a tropical tree species of north- east India. Acta Oecologica, 25 (1): 103-110.
  11. Khodabande, N. 1993. Cereals. Tehran University Press.
  12. Malcolm, P.J., Holford, P., McGlasson, W., and Newman, S. 2003. Temperature and seed weight affect the germination of peach rootstock seeds and the growth of rootstock seedlings. Scientia Horticulturae, 98 (3): 247-256.
  13. Mcclafferty, B. 2000. Ensuring food security in Egypt: Food subsidy, income generation and market reform, cairo Egypt. Food Policy, 25(2): 219-224.
  14. McDonald, M., B. and Copeland, L. 1997. Seed production: Principles and practices. International Thomson Publishing, New York.
  15. Moshatati, A. and Gharineh, M. H. 2012. Effect of grain weight on germination and seed vigor of wheat. International Journal of Agriculture and Crop Sciences, 4 (8): 458-460.
  16. Rajabzadeh, N. 2000. Foundations technology of cereals. Tehran University Press. (in Persian)
  17. Safarzadeh, D. 1993. Design and manufacturing method of the coriander seed sorter. Buali Sina University. Hamedan. Iran. (in Persian)
  18. Sarmadnia, D. 1997. Seed technology. Jihad-Daneshgahi Pub. Ashhad. Iran. (in Persian)
  19. Shewry, P. R. 2009. Wheat. Journal of Experimental Botany, 60 (60): 1537-1553.
  20. Simonyan, K.J. and Yiljep, Y.D. 2008. Investigating grain separation and cleaning efficiency distribution of a conventional stationary rasp-bar sorghum thresher. Agricultural Engineering International: the CIGR Ejournal Manuscript, (1): 1-13.
  21. Zareei, S., and Abdollahpour, S. 2016. Simulation of neuro-fuzzy model for optimization of combine header setting. Journal of Agricultural Machinery, 6 (2), 406-416. (in Persian)
  22. Wang, Y. J., Chung, D. S., Spilman, C., Eckhoff, S. R., Rhee, C. and Converse. H. 1994. Evaluation of laboratory grain cleaning and separating equipment. Part 1. Trans of the ASABE, 37 (2): 507-513.