سینتیک و همدماهای جذب رقابتی سرب و مس از محلوهای آبی با استفاده از نانو و میکرو ذرات کانی پالیگورسکیت

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد گروه خاکشناسی، دانشکده کشاورزی، دانشگاه شهید چمران اهواز ، اهواز، ایران

2 دانشیار گروه خاکشناسی، دانشکده کشاورزی، دانشگاه شهید چمران اهواز ، اهواز، ایران

3 استاد گروه خاکشناسی، دانشکده کشاورزی، دانشگاه شهید چمران اهواز ، اهواز، ایران

چکیده

تا کنون پژوهش­های اندکی در رابطه با بررسی توانایی نانوذرات پالیگورسکیت در کاهش آلودگی فلزات سنگین از محیط زیست انجام شده است. این پژوهش با هدف بررسی توانایی کانی پالیگورسکیت در اندازه­­های نانو و میکرو در حذف رقابتی سرب و مس از محلول­های آبی صورت گرفته است.آزمایش­های سینتیکی در 11 زمان تماس مختلف با استفاده از محلول­هایی که حاوی 150 میلی­گرم بر لیتر از عناصر سرب و مس بودند، انجام شده است. کانی پالیگورسکیت  به ترتیب با استفاده از آسیاب برقی و آسیاب گلوله­ای سیاره­ای در دو اندازه کوچکتر از 1/0 میلی­متر و کوچکتر از 100 نانومتر تهیه و خصوصیات فیزیکی و شیمیایی کانی، شامل ظرفیت تبادل کاتیونی (از روش اشباع­سازی با استات سدیم)، سطح ویژه (روش BET) و تجزیه عنصری آن به روش XRF اندازه­گیری شده است. تعیین همدماهای جذب عناصر در قالب آزمایشات پیمانه­ای و 6 غلظت تعادلی انجام شد.نتایج این پژوهش نشان می­دهد که با افزایش زمان تماس و کاهش اندازه ذرات از میکرو به نانو جذب عناصر سنگین سرب و مس افزایش یافته است؛ همچنین در ارزیابی سه مدل سینتیکی درجه اول، درجه دوم کاذب و پخشیدگی درون ذره­ای جهت توصیف فرآیند جذب سرب و مس توسط کانی پالیگورسکیت به نظر می­رسد مدل درجه دوم در توصیف فرآیند جذب سرب و مس توسط هر دو اندازه ذرات کانی تخمین­های قابل قبول تری را ارائه می­دهد. همچنین نتایج مدل لانگمویر برازش بهتری نسبت به مدل فروندلیچ نشان می­دهد؛ بر این اساس، به نظر می­رسد ظرفیت جذب سرب از محلول­های آبی توسط میکرو و نانوذرات کانی پالیگورسکیت نسبت به مس بیشتر است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Kinetics and isotherms of competitive adsorption of lead and copper using micro- and nanoparticles of palygorskite

نویسندگان [English]

  • Samira Alvani 1
  • ُSaeid Hojati 2
  • Ahmad Landi 3
1 M.Sc. student, Department of Soil Science, College of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Khuzestan, Iran
2 Associate Professor, Department of Soil Science, College of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Khuzestan, Iran
3 Professor, Department of Soil Science, College of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Khuzestan, Iran
چکیده [English]

Introduction Pollution of the environment to heavy metals is one of the major problems of today's world. Following the development of industries, as well as increasing agriculture in response to the growing population, the overuse of chemical fertilizers, mining activities, the production and disposal of waste waters and sewage sludge, etc., the entry and accumulation of heavy metals in the environment has increased. There are several methods for removing heavy metals from wastewaters. Among the common methods for removal of heavy metals, adsorption, in particular using inexpensive natural adsorbents, due to the ease of implementation and high efficiency is a cost-effective and economical technique. Palygorskite is a fibrous mineral common in clay fractions of soils of arid and semi-arid regions of the world. Although there are several studies applying palygorskite as a suitable mineral for cleaning of wastewaters, however, few studies have been carried out to evaluate the ability of nanosized particles of such clay minerals for removal of heavy metals from the environment. Therefore, this study was conducted to measure the ability of palygorskite nano- and micro-sized particles to adsorb lead and copper from aqueous solutions. 
Materials and Methods: Kinetic experiments were carried out at 11 different contact times (5, 10, 20, 30, 60, 120, 240, 480, 720, 1440, and 2880 min) using solutions containing 150 mg / l of lead and copper elements at pH=5. Palygorskite used in this study was purchased from Tulsa Co., Spain Then, micron (Results and Discussion The results illustrated that in the so-called samples as nanosized palygorskite, about 50% of the particles in the sample was found smaller than 100 nm in size, and in this case no samples of particle size of 100 nm and smaller were observed in those so-called palygorskite microparticles. The results indicated that by increasing the contact time and reducing the mineral particle sizes from micron to nanoscale, more amounts of lead and copper heavy elements adsorbed onto the mineral. This is due to an increase in the exposure of active sites on the adsorbent surfaces by the pollutant. When the data were fitted with the pseudo first order, pseudo second order and intraparticle diffusion kinetic models, it was revealed that the pseudo second-order kinetic model with a determination coefficient (R2) of 0.99 was the best model describing kinetics of study. Besides, the lower values of the chi-square (ᵡ2) in fit with the pseudo-second-order kinetic model as compared to those in the pseudo first-order model show a greater similarity between the pseudo-second-order kinetic model and the experimental data. The isotherm of Pb and Cu adsorption was also studied using Langmuir and Freundlich adsorption models. It was observed that the data had a better coordination with the Langmuir model with a determination coefficient of 0.99. By increasing the initial concentration of the lead and copper in the solution, their distribution coefficient (Kd) decreases. This suggests that although with increasing initial concentration of lead and copper, their adsorption increased by palygorskite mineral, however, by increasing the initial concentration of heavy metals, the remaining concentration of these elements also increased. The results also illustrated that both micro- and nanoparticles of palygorskite show more affinity to adsorb lean than copper from solutions.
Conclusion: In general, it can be concluded from this study that adsorption of lead and copper by palygorskite nanoparticles depends on the contact time and the adsorbent size. Besides, the use of this mineral could be considered as a suitable, feasible and environmentally friendly way to remove lead and copper from aqueous solutions.

کلیدواژه‌ها [English]

  • Nanoparticles
  • Palygorskite
  • kinetic
  • Lead
  • Copper
  1. Barakat, M. 2010. New trend in removing heavy metals from industrial waste water. Arabian Journal of Chemistry, 4: 361-377.
  2. Basaran, N. and Undeger, U. 2000. Effects of lead on immune parameters in occupationally exposed workers. American Journal Medicine, 38(3): 349-354.
  3. Bektas, N., Agim, B. A., Kara, S. 2004. Kinetic and equilibrium studies removing lead ions from aqueous solutions by natural Sepiolite. Journal of Hazardous Materials, 131 (12): 115-122.
  4. Bhattacharyya, K. G. and Gupta, S. S. 2006. Kaolinite, montmorillonite, and the modified derivatives as adsorbent for removal of Cd (II) from aqueous solution. Separation and Purification Technology, 50:388-397.
  5. Boparai, H.K., Joseph, M., O’Carroll, D.M. 2011. Kinetics and thermodynamics of cadmium ion removal by adsorption onto nanozerovalent iron particles. Journal of Hazardous Materials, 186: 458–465
  6. Dizaji, R. Bakhtiari, a., Miandar, M., C. And Khansari, M., AH. 2003 Relationship between hypertension and blood lead levels. Zanjan Medical Sciences Journal, 45: 31-35.
  7. Erdem, E., Karapinar, N., and Donat, R. 2004. The removal of heavy metal cations by natural zeolites. Journal of Colloid and Interface Science, 280: 309-314.
  8. Franosh, M., Malik, M., Ghorbani, R., Leader, M. And Safai, z. 2004. Evaluation of lead contamination and its related factors in children aged 6-11 years. Journal of Semnan University of Medical Sciences, 3 (4): 182-189.
  9. Galehdar, M., and Younesi, H. 2009. Bioaccumulation of heavy metals (cadmium, nickel and cobalt) by Saccaromyces cerevisia fixed yeast in a compact column. Master's thesis, Faculty of Marine and Environmental Sciences, Tarbiat Modarres University.
  10. Goswami, L., Kim, K. H., Deep, A., Das, P., Bhattacharya, S. S., Kumar, S., and Adedeji, A. 2017. Engineered nano particles: Nature, behavior, and effect on the environment. Journal of Environmental Management. 196: 297-315.
  11. Guo, G., L., Zhou, Q., X., Koval, P., V., and Belogolova, G., A. 2006. Speciation distribution of Pb and Cu in contaminated phaiozem in north-east China using single and sequential extraction procedures. Australian Journal Research, 44:135-142.
  12. Ho, Y. S., McKay, G., 1998. Kinetic models for the sorption of dye from aqueous solution by wood. Journal of Environmental Science Part B, 76: 183-191.
  13. Ho, Y., S. McKay, G. 1999. Comprative sorption kinetic studies of dye and aromatic compounds onto fly ash, Journal of Environmental Sciences and Health. 34: 1179-1204.
  14. Hojati, S., and Khademi, H. 2013. Cadmium sorption from aqueous on to Iranian sepiolite: Kinetics and isotherms. Journal of Central South University of Technology, 20: 3627-3632.
  15. Hojati, S., Khademi, H. & Faz Cano, A., 2010- Palygorskite formation under the influence of saline and alkaline groundwater in central Iranian soils. Soil Science, 175: 303-312.
  16. Hojati, S., Khademi, H. 2014. Physicochemical and Mineralogical Characteristics of Sepiolite Deposits of Northeastern Iran. Journal of Earth Sciences, 23 (90): 174-165.
  17. Hojati, S., and Landi, A., 2015. Kinetics and thermodynamics of zinc removal from a metal-plating wastewater by adsorption onto an Iranian sepiolite. International Journal of Environmental Sciences and Technology, 12: 203-210.
  18. Khodaverdilo, H., and Hamze-Nejad, Taqlid Abadi, R. 2011. Lead absorption and desorption and the effect of alternating drying on the distribution of metal in two soils with different characteristics. Journal of Water and Soil Science, 21 (1): 149-163.
  19. Lagergren, S. 1898. Zur theorie der Sogenannten Adsorption Geloster Stoffe. Kngliga Svenska Vetenskaps Akademiens Handlingar, 24: 1-39.
  20. Lalhuraitluanga, H., Jayaram, K., Prasad, MNV., Jumar, K., K. 2010. Lead (II) adsorption from aqueous solutions by raw and activated charcoals of Melocanna baccifera Roxburg ( bamboo)-A comperative study. Journal of Hazadous Material, 175 (1-3): 311-318.
  21. Mahmoud, A. Ibrahim, F. Shaban, S. Youssef, N. 2014. Adsorption of heavy metal ion from aqueous solution by nickel oxide nano catalyst prepared by different methods, Egyptian Journal of Petroleum .1-9.
  22. Mohammadnia, M. Naghizadeh, A. 2016. Surveying of kinetics, thermodynamic, and isotherm processes of fluoride removal from aqueous solutions using graphene oxide nano particles. Journal of Birjand University of Medical Sciences, 23 (1): 29-43.
  23. Naseri Bahabadi, F., Farpour, M.H., Hejazi Mehrizi, M. 2017. Removal of Cd, Cu and Zn ions from aqueous solutions using natural and Fe modified sepiolite, zeolite and palygorskite clay minerals. Water Science and Technology, 75(2): 340-349.
  24. Nezamzadeh-Ejhieh, A., R., Kabiri-Samani, M. 2013. Effective removal of Ni (II) from aqueous solutions by modification of nano particles of clinoptilolite with dimethylglyoxime. Hazadous Material, 260: 339-349.
  25. Potgieter, J., H., Potgieter-Vermaak, S., S., Kalibantonga, P., D. 2006. Heavy metals removal from solution by palygorskite clay. Minerals Engineering, 19: 463-470.
  26. Rajabi, B., Khodaverdilo, H., Samadi, A. And Sedghiani, m. 1387. Lead absorption and desorption in some West Azarbaijan calcareous soils. Water and Soil Journal (Science and Technology of Agriculture), 25 (6): 1287-1298.
  27. Rajabzadeh, A., Heydari, Z., Mahmoudnezhad Sagheb, H., Nouri Moghi, M., Moradi, and Hosseini panah, M. 2004. A Survey on the Effect of Chronic Poisoning with Lead on Ultrastructure Changes in the Cytoplasmic Neutrophilous Sperm of the Mouse Embryo. Zanjan Journal of Medical Sciences and Health Services, 45: 21-26.
  28. Rasouli, M. Yaghobi, N. Allahgholipour, F. Atashi, H. 2012. Para-xylene adsorption separation process using nano-zeolite Ba-X.Journal of Chemical Engineering Research and Design 92(6):1192–1199.
  29. Ridvan, S., Birlik, E., Denizli, A., and Ersoz, A. 2006. Removal of heavy metal ions by dithiocarbamate-anchored polymer/organosmectites. Applied Clay Science, 31: 298-305.
  30. Saha, U.K., Taniguchi, T. and Sakurai, K. 2002. Simulaneous adsorption of cadmium, zinc and lead on Hydroaluminium and Hydroalumiosilicate Montmorillonite complex. Journal of Soil Science, 66: 117-128.
  31. Sekhon, B., S. 2010. Food nano technology an overview. Nano technology, Science and Application, 3: 1-15.
  32. Sekhon, B., S. 2014. Nano technology in agrifood production: an overview. Nano technology, Science and Application, 7: 31-53.
  33. Sharifipour, F. Hojati, S. Landi, A. Faz Cano, A. 2014. Removal of Lead from Aqueous Solutions Using Iranian Natural Sepiolite: Effects of Contact Time, Temperature, pH, Dose and Heat-Pretreatment. Irrigation Science and Engineering (Journal of Agriculture), Vol. 38. No, 1. Pp: 135-147.
  34. Sharifipour, F., Hojati, S., Landi, A., and Faz Cano, A. 2015. Kinetics and thermodynamics of Lead adsorption from aqueous solution onto Iranian Sepiolite and Zeolite. International Journal of Environmental Research, 9 (3): 1001-1010.
  35. Sharma, Y., C. Thermodynamics of removal of Cd by adsorption on an indigenous clay, Journal of Chem. Eng. 145: 64-68.
  36. Sheikhhosseini, A., Shariatmadari, H. and Shivani, M. 2013. Competitive adsorption nickel, cadmium, zinc and copper on palygorskite and sepiolite silicate clay minerals. Geoderma, 192: 249-253.
  37. Shirvani, M., Shariatmadari, H. and Kalbasi, M. 2007. Kinetics of cadmium desorption from fibrous silicate clay minerals: Influence of organic ligands and aging. Applied Clay Science, 37: 175-184
  38. Singer, A. 1989. Palygorskite and sepiolite group minerals. In: Dioxon, J., B. and Weeds, S., B. (Eds). Minerals in soil Environments. 2nd Ed. SSSA Book Series No1, I. SSSA, Madison, WI, PP: 829-872.
  39. Sočo, E., Kalembkiewicz, J. 2015. Removal of Copper (II) and Zinc (II) Ions from Aqueous Solution by Chemical Treatment of Coal Fly Ash. Journal of Croatica Chemica 88(3), 267–279.
  40. Solgi, A. Esmaili Sari, A. Riahi Bakhtiari, A. Hadipour, M. 2016. Soil Pollution to Arsenic in Urban Areas: Case Study of Arak City. Journal of Health and Environment, Quarterly Journal of Environmental Health Research, Vol. 8, No. 1, Spring 94, pp. 1-10.
  41. Solhi, M. 2005. Plants for contaminating soils with lead and zinc elements and using zinc radioisotope to study zinc behavior on soil and plant. Ph.D., Faculty of Agriculture, Isfahan University of Technology.
  42. Sparks, D. l. 2005. Environmental Soil Chemistry. Academic Pres San Diego, California.
  43. Sun, B., Zhao, F. J., Lombi, E., McGrath, S.P. 2001. Leaching of heavy metals from contaminated soils using EDTA. Journal of Environmental Pollution. 113: 111-120.
  44. Thomas, G. W. 1982. Exchangable cations. In: Page, A. L. et al. (EDs). Methods of Soil Analysis. ASA-SSA, Madison, WI, PP: 159-164.
  45. Turan, M., Mart, U., Yuksel, B., Sabri, C., M. 2005. Lead removal in fixed-bed columns by zeolite and sepiolite. Chemosphere, 60: 1487-1492.
  46. Wu, P. Wu, W. Li, S. Nengwuzhu, N. X. Li, P. Wu, J. Yang, C. Dand, Z. 2009. Removal of Cd from aqueous solution by adsorption using Fe-montmorillonite, Journal of Hazardous Materials. 169: 824-830.
Vega, F.A. Covelo, E.F. and Andrade, M.L. 2006. Competive sorption and desorption of heavy metals in mine soils: Influence of mine soil characteristics. Journal of Colloid and Interface Science, 298: 582-592.