نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی سابق کارشناسی ارشد گروه علوم خاک، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان، کرمان، ایران

2 استادیار گروه علوم خاک، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان، کرمان، ایران

3 استادگروه علوم خاک، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان، کرمان، ایران

چکیده

شناسایی رقومی خاک، برای استفاده مفید و مؤثر از خاک و تصمیم­گیری­های مدیریتی مهم است. این پژوهش با هدف تهیه نقشه رقومی گروه بزرگ خاک با روش رگرسیون لاجیستیک چند جمله­ای با استفاده از دو مجموعه از متغیر­های کمکی، شامل: مجموعه (1) متغیر­های مشتق شده از مدل رقومی ارتفاع، شاخص­های سنجش از دور، سطوح ژئومورفیک تفکیک شده و نقشه زمین­شناسی منطقه­ی مورد پژوهش، و مجموعه (۲) متغیر­های مشتق شده از مدل رقومی ارتفاع، شاخص­های سنجش از دور، سطوح ژئومورفیک تفکیک شده، نقشه زمین­شناسی و واحد­های خاک شناسایی شده (نقشه قدیمی خاک)، در بخشی از اراضی منطقه­ی فاریاب کرمان، طراحی شد. به­منظور دست­یابی به این هدف، نقشه ژئومورفولوژی بر مبنای توپوگرافی، مواد مادری و تفسیر تصاویر ماهواره­ای تهیه شد. از طرح نمونه­برداری لاتین هایپر­کیوب در منطقه مورد پژوهش به مساحت 14 هزار هکتار، برای تعیین نقاط نمونه­برداری استفاده شد و 70 خاکرخ حفر و تشریح شد. نتایج این پژوهش نشان داد شاخص موقعیت توپوگرافی، بیشترین تاثیر را در پیش­بینی گروه­های بزرگ خاک دارد. نتایج ارزیابی دقت مدل رگرسیون لاجیستیک چند جمله­ای، نشان داد که با به­کارگیری نقشه قدیمی خاک در مدل­سازی، شاخص­های اعتبار­سنجی مدل، از جمله خلوصنقشه و شاخص کاپا به ترتیب از 47/0 و 16/0 به 63/0 و 43/0 افزایش یافتند. به‌طور کلی نتایج نشان داد که دقت روش  نقشه­برداری رقومی با بکارگیری نقشه قدیمی خاک، می­تواند ارتقاء پیدا کند و کاربرد نقشه­های تولید شده را افزایش دهد؛ همچنین قابلیت استفاده از این نقشه­ها را برای شاخه­های علمی مختلف امکان­پذیر کند. 

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Digital Soil Mapping using legacy soil data: Case study of Faryab region of Kerman

نویسندگان [English]

  • Mansooreh Khaleghi 1
  • Azam Jafari 2
  • Mohammad Hadi Farpour 3

1 Former MSc Student of Department of Soil Science, College of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran

2 Assistant Professor, Department of Soil Science, College of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran

3 Professor, Department of Soil Science, College of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran

چکیده [English]

Introduction Soil digital mapping represents a set of mathematical computations to predict the distribution of soil classes in the landscape. This approach relies on statistical relationships between measured soil observations and environmental covariates at the sampling locations. The need for digital soil mapping as an addition to conventional soil surveys results from a worldwide growing demand for high- resolution digital soil maps for environmental protection and management as well as projects of the public authorities. Digital soil data is increasing based on new processing tools and various digital data. The digital identification of soils as a tool for creating soil spatial data provides ways to address the growing need for high-resolution soil maps. The main objective of this study is to generate the digital soil map based on the legacy soil data.
Materials and methods The study area is located in southeastern Iran, 330 km from Kerman city, in Faryab distinct. In this study, a Latin hypercube sampling design was applied and the sampling was done according to the difference in landforms (geomorphology map), topography (including digital elevation map) and geology. The geographic locations of 70 profiles were identified. Soil profiles were described according to U.S. Soil Taxonomy (Soil Survey Staff, 2014) and finally, the soil samples were taken from their diagnostic horizons. The collected soil samples were transferred to the laboratory, and some physical and chemical analyzes were performed based on routine standard methods. Environmental data include the parameters derived from the digital elevation model, Landsat satellite images (remote sensing indexes), geology map, geomorphic units (geomorphology map) and legacy soil map of the study area. All environmental variables were derived using ENVI and SAGA software. In this research, a multinomial logistic regression model was used to predict soil classes and the modeling was done in two scenarios: 1- modeling without the legacy soil map and 2- modeling with the legacy soil map. Estimation of predictive accuracy of soil classes was also done using the overall accuracy index and Kappa coefficient.
Results and discussion The result of the modeling with the multinomial logistic regression method in two sets of input variables showed that the topographic position index is the most effective variable in predicting soil classes. This confirms topographic importance on soil genesis in the studied area. After topographic variables, the legacy soil data is an effective parameter in modeling. The legacy data of soil is a strong and valuable database for predicting soil characteristics. The old soil map consists of the salt surfaces and Inceptisols order. Unlike the hot and arid climate of the study area, Inceptisols order was identified in the old soil map. Soil survey with very small scale was probably led to generalization of the studied soils and hiding the main soils of the study area. However, the small-scale mapping and the presentation of different soils in the region do not prevent the presence of the old soil map as an important predictor. It seems that there is a high concordance between the borders of old soil map and the described soils diversity in the study area. The matching and concordance between the boundaries of the old map and the described soil profiles help the model to differentiate different soils, although the correspondence between the soils type of the old soil map and the observed soils can play a more effective role in predicting by the model. Soil legacy information is a powerful and valuable database for predicting any feature of the soil.
In both predicted maps, four major groups of Haplosalids, Haplocambids, Haplocalcids and Torriorthents were identified. The great group of Torriorthents is located in the north of the region and in the alluvial fan landform. Haplosalids great groups were most commonly found in clayey surfaces. Haplocambids and Haplocalcids great groups are located more in the geomorphic surface of the cultivated fan and the piedmont plain, respectively. The results of the predictive quality of the logistic regression model showed that the number of well-estimated soils in the presence of the old soil map is more than when there is no old soil map in the modeling. In addition, the results of the validation of the models showed that the map accuracy and kappa index increased in presence of the legacy soil map. As a result, the model's validation indices including the map purity and Kappa index increased from 0.47 and 0.16 to 0.63 and 0.43, respectively. In both models, the highest accuracy of the estimation was obtained for Haplocambids great group.
Conclusions The results showed that topographic position index was the most important and powerful variable for forecasting in both models, and confirms that topography or relief is the most important soil forming factor in the study area. Using the legacy soil map as one of the environmental variables in modeling, efficiency and accuracy are more accurate than modeling without the legacy soil map. If the old soil maps as legacy information are used in digital soil mapping, the similarity and matching of the soils of the studied area shoud be cheched even with the very small scale because the high concordance leads to rational prediction, and random and chance predictions do not occur.

کلیدواژه‌ها [English]

  • Multinomial logistic regression
  • soil great group
  • auxiliary variables
  • legacy soil map
  1. Abaszadehafshar, F., Ayubi, Sh., and Jafari, A. 2016. Digital mapping of of soil classes using the old soil map in dry region of southeast Iran. Journal of Water and Soil, 21(1): 239. (in Persian with English abstract).
  2. Adhikari, K., Hartemink, A.E., Minasny, B., Bou Kheir, R., Greve, M.H., and Greve, M.B. 2014. Digital mapping of soil organic carbon contents and stocks in Denmark. PLoS ONE, 9:1-13.
  3. Bagheri Bodaghabadi, M., Martinez-Casasnovas, J.A., Salehi, M.H., Mohammadi, J., Esfandiarpoor Borujeni, I., Toomanian, N., and Gandomkar, A. 2015. Digital soil mapping using artificial neural networks and terrain-related attributes. Pedosphere, 25: 580-591.
  4. Barthold, F.K., Wiesmeier, M., Breuer, L., Frede, H.G., Wu, J., and Blank, F.B. 2013. Land use and climate control the spatial distribution of soil types in the grasslands of Inner Mongolia. Journal of Arid Environments, 88: 194–205.
  5. Behrens, T., Zhu, A.X., Schmidt, K., and Scholten, T. 2010. Multi-scale digital terrain analysis and feature selection for digital soil mapping. Geoderma, 155: 175-185.
  6. Bouyoucos, G.J. 1962. Hydrometer method improved for making particle size analysis of soils. Journal of Agronomy, 54: 464-465.
  7. Brungard, C.W., Boettinger, J.L., Duniway, M.C., Wills, S.A., and Edwards, T.C. 2015. Machine learning for predicting soil classes in three Semi- arid landscapes. Geoderma, 239-240: 68-83.
  8. Campling, P., Gobin, A., and Feyen, J. 2002. Logistic modeling to spatially predict the probability of soil drainage classes. Soil Science Society of America Journal, 66: 1390-1401.
  9. Debella-Gilo, M., and Etzelmuller, B. 2009. Spatial prediction of soil classes using digital terrain analysis and multinomial logistic regression modeling integrated in GIS: Examples from Vestfold County, Norway. Catena, 77: 8-18.
  10. Du, C., Linker, R., and Shaviv, A. 2008. Identification of agricultural mediterranean soils using mid-infrared photoacoustic spectroscopy. Geoderma, 143: 85–90.
  11. Geographic Organization of the Ministry of Defense and Armed Forces Support. 1382. Geographic Cultural Districts of Kerman Province, Jiroft County. Vol 5 Page 3.
  12. Hengl, T., Toomanian, N., Reuter, H., and Malakouti, M.J. 2007. Methods to interpolate soil categorical variables from profile observations: lessons from Iran. Geoderma, 140: 417-427.
  13. Jafari, A., Ayoubi, S., Khademi, H., Finke, P.A., and Toomanian, N. 2013. Selection of a taxonomic level for soil mapping using diversity and map purity indices: a case study from an Iranian arid region. Geomorphology, 201: 86-97.
  14. Jafari, A., Finke, P.A., Van de Wauw, J., Ayoubi, S., and Khademi, H. 2012. Spatial prediction of usda-great soil groups in the arid Zarand region, Iran: comparing logistic regression approaches to predict diagnostic horizons and soil types. European Journal of Soil Science, 63, 284–298.
  15. Kempen, B., Brus, D.J., Heuvelink, G.B.M., and Stoorvogel, J.J. 2009. Updating the 1:50,000 Dutch soil map using legacy soil data: a multinomial logistic regression approach. Geoderma, 151: 311–326.
  16. Klute, A. 1986. Water Retention: Laboratory Methods. p. 635-662. In: A. Klute ed. Methods of Soil Analysis: Part 1. Physical and mineralogical methods. ASA Monograph Number 9.
  17. Kolay, A.K. 2000. Basic concepts of soils science. 2nd Ed. New AGE International Publishers, 420 p.
  18. Landis, J.R., and Koch, G.G. 1977. The measurement of observer agreement for categorical data. Biometrics, 33:159–174.
  19. Lanyon, L.E., and Heald, W.R. 1982. Magnesium, Calcium, Strontium and Barium. P. 247-260. In: A.L., Page et al. Ed. Methods OF Soil Analysis, PART II. 2nd ed., Argon. Monogar. No: 9. ASA and SSSA. Madison, WI.
  20. Marchetti, A., Piccini, C., Santucci, S., Chiuchiarelli, I., and Francaviglia, R. 2011. Simulation of soil types in Teramo Province, Central Italy, with terrain parameters and remote sensing data. Catena, 85 (3): 267-273.
  21. McBratney, A.B., Mendonça-Santos, M.L., and Minasny, B. 2003. On digital soil mapping. Geoderma, 117: 3–52.
  22. McKenzie, N.J., Gessler, P.E., Ryan, P.J., and O’Connell, D. 2000. The role of terrain analysis in soil mapping. PP. 245–65. In: Wilson, J. and J. Gallant, Eds, Terrain Analysis: Principles and Applications. New York, John Wiley and Sons.
  23. Minasny, B., and McBratney, A.B. 2006. Mechanistic soil-landscape modeling as an approach to developing pedogenetic classifications. Geoderma, 133: 138-149.
  24. Minasny, B., and McBratney, A.B. 2007. Incorporating taxonomic distance in to spatial prediction and digital mapping of soil classes. Geoderma, 142: 285– 293.
  25. Moore, I.D., Grayson, R.B., and Ladson, A.R. 1991. Digital terrain modeling: Review of hydrological, geomorphological and biological applications. Hydrological Processes, 5: 3-30.
  26. Nelson, D.W., and Sommers, L.E. 1982. Total carbon, organic carbon and organic matter. Pp. 539-579. In: A. L. Page et al. ed. Methods of Soil Analysis: Part 2. Chemical and Microbiological Properties. ASA Monograph Number 9.
  27. Olaniyan, J.O., and Ogunkunle, A.O. 2007. An evaluation of the soil map of Nigeria: II. Purity of Mapping Unit. J. World Assoc. Soil Water Conservation Journal, 2: 97-108.
  28. Page, A.L., Miller, R.H., and Kenney, D.R. 1992. Methods of Soil Analysis. Part II. Chemical and Mineralogical Properties, 2nd. Edn. SSSA Pub, Madison, p 1159.
  29. Page, S.E., Wust, R.A.J., Wriss, D., Rieley, J.O., Shotyk, W., and Limin, S.H. 2004. A record of Late Pleistocene and Holocene Carbon Accumulation and Climate Change Forman Equatorial Peat bag (Kalimantion, Indonesia): Implication for Past, Present and Future Carbon Dynamics. Journal of Quaternary Science, 19 (17): 625-635.
  30. Pahlavanrad, M.R., Toomanian, N., Khormali, F., Brungard, C.W., Komaki, C.B., and Bogaert, P. 2014. Updating soil survey maps using random forest and conditioned latin hypercube sampling in the loess derived soils of northern Iran. Geoderma, 232–234: 97–106.
  31. Rhoades, J.D. 1982. Soluble salts. P. 167-179. In: A. L. Page et al. ed. Methods of Soil Analysis: Part 2: Chemical and Microbiological Properties Agronomy. Monograph Number 9 (Second Edition). ASA, Madison, WI.
  32. Salehi, M.H., and Khademi, H. 2008. Foundations of Soil Mapping. Isfahan University of Technology Press: 220. (in Persian).
  33. Scull, P., Franklin, J., Chadwick, O., and McArthur D. 2003. Predictive soil mapping: a review. Progress in Physical Geography, 27: 171-197.
  34. Soil Survey Staff. 2014. Soil Taxonomy: A basic systems of Soil Classification for making and interpreting soil surveys. Twelfth Edition. NRCS. USDA.
  35. Subburayalu, S.K., and Slater, B.K. 2013. Soil series mapping by knowledge discovery from an Ohio county soil map. Soil Science Society of America Journal, 77: 1254–1268.
  36. SWRI (soil and Water Research Institute). 1953. Projerct on the semi-ditailed Land classification survey of parts 1 and 2 of Karkheh area, Khuzestan, Iran. By HD Thomas, ML Dewan and DA Sparwasser. 10 pp.).
  37. Taghizadeh Mehrjardi, R. 2016. New Topics in Soil Science. Ardakan University Press (in Persian).
  38. Taghizadeh Mehrjardi, R., Minasny, B., McBratney, A.B., Triantafilis, J., Sarmadian, F., and N. Toomanian. 2012. Digital soil mapping of soil classes using decision trees in central Iran. Digital Soil Assessments and Beyond - Proceedings of the 5th Global Workshop on Digital Soil Mapping, 24, July, Sydney, Australia.
  39. U.S. Salinity Laboratory Staff. 1954. Alkaline-earth Carbonates by Gravimetric Loss of Carbon Dioxide. p. 105. In: L. A. Richards (ed.) Diagnosis and Improvement of Saline and Alkali Soils. USDA Agric. Handbook. 60. U.S.
  40. Vaysse, K., and Lagacherie, P. 2015. Evaluating digital soil mapping approaches for mapping global soil map soil properties from legacy data in Languedoc-Roussillon (France). Geoderma Regional, 4: 20–30.
  41. Zeraatpisheh, M., Ayoubi, S., Jafari, A., and Finke, P. 2017. Comparing the efficiency of digital and conventional soil mapping to predict soil types in a semi-arid region in Iran. Geomorphology, 285, 186-204.

Ziadat, F.M. 2007. Land suitability classification using different sources of information: Soil maps and predicted soil attributes in Jordan. Geoderma, 140: 73-80.