تاثیر برخی مواد اصلاحی آلی و معدنی برکاهش زیست فراهمی و توزیع شکل های شیمیایی سرب و کادمیوم در یک خاک آهکی آلوده به عناصر سنگین

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری علوم خاک، گروه علوم خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

2 دانشیار گروه علوم خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

3 استاد گروه علوم خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

چکیده

آلودگی منابع آب و خاک به فلزات سنگین، از چالش­های مهم عصر کنونی است؛ به­همین دلیل، آلودگی­زدایی چنین خاک­هایی، پیش­نیاز هرگونه بهره­برداری بهینه از این منابع است. یکی از روش­های مقرون به­صرفه برای پیش­گیری از انتشار فلزات سنگین در منابع آب و خاک، تثبیت و جامدسازی آن­هاست. طی این فرایند، فلزات سنگین در خاک­های آلوده با اصلاح­کننده­هایی همچون مواد آلی و  معدنی واکنش داده و با تشکیل موادی کم­محلول یا نامحلول در محیط، به صورتی پایدار باقی­ می­مانند. در این پژوهش، به‌منظور بررسی اثر مواد اصلاحی آلی (بیوچار تهیه شده در دمای 640 و زمان 30 دقیقه از کاه و کلش برنج و بیوچار تهیه شده در دمای 420 و زمان 2 ساعت از کاه و کلش برنج) و معدنی (پومیس، لیکا، زئولیت و بنتونیت) در سه سطح صفر، 1 و 5 درصد وزنی بر عدم تحرک و تثبیت دو فلز کادمیوم و سرب در خاک­های آلوده، آزمایشی در قالب طرح کاملا تصادفی با سه تکرار  انجام گرفت. نتایج حاصل از این پژوهش نشان داد که افزودن مواد اصلاحی به خاک، موجب کاهش غلظت کادمیوم و سرب عصاره­گیری شده با DTPA و EDTA شد. بیشترین کاهش غلظت سرب عصاره­گیری شده با DTPA و EDTA (بخش محلول یا زیست فراهمی) در تیمار سطح 5٪ بیوچار 640 مشاهده شدکه در مقایسه با شاهد، به­ترتیب کاهشی معادل 68 و 2/41 درصد داشتند؛ همچنین بیشترین کاهش غلظت کادمیوم عصاره­گیری شده با DTPA و EDTA به­ترتیب مربوط به تیمارهای سطح 5٪ پومیس و زئولیت  بود که به ترتیب 39 و 8/28 درصد نسبت به شاهد کمتر بودند. بیشترین کاهش غلظت سرب و کادمیوم در بخش تبادلی  در سطح 5٪ بیوچار 640 مشاهده شد که در مقایسه با شاهد، به ترتیب کاهشی معادل 96/54 و 41 درصد  داشتند. کاربرد اصلاح­کننده­ها، اثری معنی­دار بر مقدار کل سرب و کادمیوم خاک نداشتند. بنابراین، تکنیک حاضر، می­تواند به طور مؤثری، زیست فراهمی سرب و کادمیوم را در خاک کاهش دهد که این مساله می­تواند در اصلاح خاک استفاده شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effects of some organic and inorganic amendments on the bioavailability and distribution of different Fractions of lead and cadmium in a calcareous contaminated soil

نویسندگان [English]

  • Somayeh Sefidgar shahkolaie 1
  • Mojtaba Baranimotlagh 2
  • Farhad Khormali 3
  • Esmael Dordipour 2
1 PhD Student, Department of Soil Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
2 Associate Prof., Department of Soil Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
3 Professor., Department of Soil Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
چکیده [English]

Introduction At present, contamination of water and soil resources is an important environmental challenge. Therefore, decontamination of such is a prerequirement for using these resources. Cadmium (Cd) and lead (Pb) often coexist in contaminated soils and there is currently no effective means for their concurrent removal. Concerns about their mobility and bioavailability have increased because of food safety, potential health risks and its detrimental effects on the ecosystems. The stabilization/solidification is a cost effective remediation method that prevents spreading of heavy metals in soil and water resources. In this process, contaminated soil reacts with amendments such as organic and liming materials to form low soluble or non-soluble stable materials. The objective of this study was to evaluate the effect of several low cost amendments on Cd and Pb stabilization by a sequential extraction method.
Materials and Methods In this research, in order to investigate the effect of organic amendments (biochar 640°C, and biochar 420°C) and inorganic amendments (Pumice, Leca, Zeolite, and Bentonite) on Pb and Cd stabilization in a contaminated soil, an incubation experiment was carried out. One kilogram of each amended soil and the control soil were packed into respective pots. Soils were amended in the laboratory using biochar 640 (BI1), biochar 420 (BI2) bentonite (BE), pumice (P), leca (LE), and zeolite (Z). A control treatment (C) without adding amendment was also prepared. The amendment materials were applied at 1 and 5 percent wt. Each treatment was performed in three replicates and the samples were incubated in the dark at 14°C for 6 months. At the end of the incubation time, the potential bioavailability of Cd in non-amended and amended soils was evaluated by extraction with DTPA and ethylenediamine tetraacetic acid (EDTA). Total Cd (CdT) and Pb (PbT) was extracted by aqua regia (HNO3 + HCl) extraction. The chemical fractions of Cd and Pb were determined by a sequential extraction method which is a five-step chemical fractionation based on the work of Tessier et al. (1979). All statistical analyses were performed using SAS software. Means of different treatments were compared using LSD (P ≤0.05) test.
Results and Discussion The results indicated that the additions of amendments to soils reduced the concentration of DTPA and EDTA-extracted Pb and Cd. The smallest concentration of Pb-extracted DTPA and EDTA was observed in organic amendments treated soil (biochar 640°C, and biochar 420°C) and treated with 5% biochar 640°C, respectively. The high sorbent capacity of the BI used in this study could be due to its high pH, high content of organic carbon and cation exchange capacity (CEC). The highest decreasing rate of DTPA and EDTA-extractable of Cd was observed in treated with 5% pumice and zeolite, respectively. Application of the amendments (except for 1% LE) decreased exchangeable fraction (F1) of Pb compared to the non-amended soil. Also, the amendments (except for 1% P, Z and BE) decreased exchangeable fraction (F1) of Cd compared to the non-amended soil. Although the biochar 640 (5%) showed the highest decreasing rate of exchangeable fraction (F1) of Pb and Cd, they increased the oxide (F3) and organic (F4) fractions, which might be due to its rich O-containing functional groups and high alkalinity leading to an increase in the binding of Cd and Pb to organic compounds and mineral oxides.
Conclusion Results indicated that application of amendments was successful in lowering the potential bioavailability of Pb and Cd soils. The 5% biochar 640 treatment had the greatest decrease in extractable Pb. Also, the 5% zeolite and pumice treatment had the greatest decrease in extractable Cd. Application of BI resulted in a significant decrease in both Pb and Cd exchangeable fraction (F1). This reduction in the exchangeable fraction (F1) of Cd and Pb in the soil was due to an increase in the fraction of heavy metals bound to the soil organic matter (F4) oxides (F3) after BI addition. Enhanced precipitation or co-precipitation and complexation of metals with amendments led to the reduction of the solubility of the metals. The P, LE, BE, and Z altered the exchangeable fraction (F1) of Cd and Pb to the oxide fraction (F3) and the carbonate fraction (F3), respectively. Application of BI amendment causes the highest decreasing rate of solubility Cd and Pb, suggesting this as the suitable amendment for the remediation of Cd and Pb in contaminated soils.

کلیدواژه‌ها [English]

  • Amendments
  • Bioavailability
  • Cadmium
  • Chemical fractions
  • Lead
  1. Abedi-Koupai, J., Mollaei, R., and Eslamian, S. 2015. The effect of pumice on reduction of cadmium uptake by spinach irrigated with wastewater. Ecohydrology and Hydrobiology, 15: 208-214.
  2. Agrawal, J., Sherameti, I., and Varma, A. 2011. Detoxification of Heavy Metals: State of Art,PP. 1-34.
  3. Ahmad, M., Rajapaksha, A.U., Lim, J.E., Zhang, M., Bolan. M., Mohan. D., Vithanage. M., Lee. S., and Ok. Y.S. 2014. Biochar as a sorbent for contaminant management in soil and water. Chemosphere, 99: 19–33.
  4. Ahnstrom, Z.S. and Parker, D.R. 1999. Development and assessment of a sequential extraction procedure for thefractionation of soil cadmium. Soil Science Society of America Journal, 63:1650-1658.
  5. Alabarse, F., Conceição, R.V.C., Balzaretti, N.M., Schenato. F., and Xavier. A.M. 2011. In-situ FTIR analyses of bentonite under high-pressure. Applied Clay Science, 51:202–208.
  6. Alexandratos, V.G., Elzinga, E.J., and Reeder, R.J. 2007. Arsenate uptake by calcite: Macroscopic and spectroscopic characterization of adsorption and incorporation mechanisms. Geochimica et Cosmochimica Acta, 4172-4187.
  7. Almas, A., Singh, B.R. and Salbu, B. 1999. Mobility of cadmium- 109 and zinc-65 in soil influenced by equilibration time, temperature, and organic matter. Journal of Environmental Quality, 28:1742–1750.
  8. Azeez, P.A., Prusty, B.A.K. and Jagadeesh, E.P. 2006. Chemical speciation of metals in environment, its relevancy to ecotoxicological studies and the need for biosensor development. Journal of Food, Agriculture and Environment, 4(3  4):235- 239.
  9. Chapman, H.D. 1965. Cation exchange capacity. In: Methods of Soil Analysis. Part II. Black, C. A. (Ed). American Society of Agronomy, Madison, WI, USA.
  10. Chen, M., and Ma. L. 2001. Comparison of three aqua regia digestion methods for twenty Florida soils. Soil Science Society of America Journal, 65:499–510.
  11. Chi, J., and Liub, H. 2016. Effects of biochars derived from different pyrolysis temperatures ongrowth of Vallisneria spiralis and dissipation of polycyclic aromatic hydrocarbons in sediments. Ecological Engineering, 93:199–206.
  12. Cui, L., Pan, G., Li, L., Bian, R., Liu, X., Yan, J., Quan, G., Ding, C., Chen, T., Liu, Y., Yin, C., Wei, C., Yang, Y., and Hussain, Q. 2016. Continuous immobilization of cadmium and lead in biochar amended contaminated paddy soil: A five-year field experiment. Ecological Engineering, 93:1–8.
  13. Day, P.R. 1955. Particle fractionation and particle-size analysis. In: Black, C.A. (Ed), Method of soil analysis. Part I. Agronomy 9, Soil Science Society. America. Madison, WI. Pp. 545-567.
  14. Gupta, S.S. and Bhattacharyya, K.G. 2008. Immobilization of Pb(II), Cd(II) and Ni(II) ions on kaolinite and montmorillonite surfaces from aqueous medium. Journal Environmental Management, 87: 46-58.
  15. Huang, H., Yao, W., Li, R., Ali, A., Du, J., Guo, D., Xiao, R., Guo, Z., Zhang, Z., and Awasthi, M.K. 2018. Effect of pyrolysis temperature on chemical form, behavior and environmental risk of Zn, Pb and Cd in biochar produced from phytoremediation residue. Bioresource Technology, 249:487–493.
  16. Jafari Haghighi, M. 2003. Methods of soil analysis, sampling and analysis of important physiochemical properties with emphasis on theory and application principles. Nedaye Zoha Publication, 187p.
  17. Janoš, P., Vávrová, J., Herzogová, L., and Pilařová, V. 2010. Effects of inorganic and organic amendments on the mobility (leachability) of heavy metals in contaminated soil: A sequential extraction study. Geoderma, 159:335–341.
  18. Kabata-Pendias, A. 2001. Trace Elements in Soils and Plants. CRC Press, Boca Raton, FL. pp. 413.
  19. Kiran, Y.K., Barkat, A., Xiao-qiang, C., Ying, F., Feng-shan, P., Lin, T., and Xiao-e, Y. 2017. Cow manure and cow manure-derived biochar application as a soil amendment for reducing cadmium availability and accumulation by Brassica chinensis L. in acidic red soil. Journal of Integrative Agriculture, 16(3):725–734.
  20. Kosson, D.S., Van, der Sloot, H.A., Sanchez, F., and Garrabrants, A.C. 2002. An integrated framework for evaluating leaching in waste management and utilization of secondary materials. Environmental Engineering Science, 19:159–204.
  21. Lee, S.H., Lee, J.S., Choi, Y., and Kim, J. 2009. In situ stabilization of cadmium-, lead-, and zinc-contaminated soil using various amendments. Chemosphere, 77: 1069–1075.
  22. Lindsay, W.L., and Norvell, W.A.1978. Development of a DTPA soil test for Zn, Fe, Mn, and Cu. Soil Science Society of America Journal, 42:421-428.
  23. Lu, K., Yang, X., Shen, J., Robinson, B., Huang, H., Liu, D., Bolan, N., Pei, J., and Wang, H. 2014. Effect of bamboo and rice straw biochars on the bioavailability of Cd, Cu, Pb and Zn to Sedum plumbizincicola. Agriculture, Ecosystems and Environment, 191:124–132.
  24. Mahabadi, A.A., Hajabbasi, M.A., Khademi, H., and Kazemian, H. 2007. Soil cadmium stabilization using an Iranian natural zeolite. Geoderma, 137:388–393.
  25. Malakootian, M., Nouri, J., Hossaini, H. 2009. Removal of heavy metals from paint industry's wastewater using Leca as an available adsorbent. International Journal of Environmental Science and Technology, 6 (2):183-190.  
  26. Mc Lean, E.O. 1982. Soil PH and lime requirement. P. 192-224. In: Methods of soil analysis (part II) Chemical and microbiological properties, Page et al. (Ed.). American Society of Agronomy, Inc., Soil Science Society of America, Inc. Publisher. Madison, Wisconsin, USA.
  27. McGrath, D. 1996. Application of single and sequential extraction procedures to polluted and unpolluted soils. The Science of the Total Environment, 178:37-44.
  28. Mohammadi –Kalhoria, E., Yetilmezsoy, K., and Uygur, N. 2013. Modeling of adsorption of toxic chromium on natural and surface modified lightweight expanded clay aggregate (LECA). Applied Surface Science, 287:428– 442.
  29. Neal, W., Menzies, Michael, J., Donn, Peter, M. and Kopittke. 2007. Evaluation of extractants for estimation of the phytoavailable trace metals in soils. Environmental Pollution, 145:121-130.
  30. Nolan, A.L., Mclaughlin, M.J. and Mason, S.D. 2003. Chemical Speciation of Zn, Cd, Cu, and Pb In Pore Waters of Agricultural and Contaminated soils using Donnan Dialysis. Environmental Science and Technology, 37:90-98.
  31. Page, A.L., Miller, R.H., and Keeney, D.R. 1982. Methods of Analysis. Part 2. Chemical and Microbiological properties. 2nd ed. ASA. Madison, WI, USA.
  32. Panuccio, M.R., Sorgona, A., Rizzo, M., Cacco, G. 2009. Cadmium adsorption on vermiculite, zeolite and pumice: Batch experimental studies. Journal Environmental Management, 90:364-374.
  33. Park, J.H., Choppala, G.K., Bolan, N.S., Chung, J.W., Chuasavathi, T., 2011. Biocharreduces the bioavailability and phytotoxicity of heavy metals. Plant and Soil, 348:439–451.
  34. Prusty, B.G., Sahu, K.C. and Godgul, G. 1994. Metal contamination due to mining and milling activities at the Zawar zinc mine, Rajasthan, India. 1. Contamination of stream sediments. Chemical Geology, 112:275-291.
  35. Puga, A.P., Melo, L.C.A., Abreu, C.A., Coscione, A.R., and Paz-Ferreiro, J. 2016. Leaching and fractionation of heavy metals in mining soils amended with biochar. Soil and Tillage Research, 164: 25–33.
  36. Quevauviller, P. 2002. Methodologies in soil and sediment fractionation studies: single and sequential extraction procedures. The Royal Society of Chemistry.
  37. Quevauviller, P.H., Lachicab, M., Barahonab, E., Rauretc, G., Ured, A., Gomeze, A., and Muntauf, H. 1996. Interlaboratory comparison of EDTA and DTPA procedures prior to certification of extractable trace elements in calcareous soil. The Science of the Total Environment, 178:127-132.
  38. Ramzani, P.M., Coyne, M.S., Anjum, S., Khan, W., and Iqbal, M. 2017. In situ immobilization of Cd by organic amendments and their effect on antioxidant enzyme defense mechanism in mung bean (Vigna radiata L.) seedlings. Plant Physiology and Biochemistry, 118: 561-570.
  39. Sabry, M., Shaheen, M., and Rinklebe, J. 2015. Impact of emerging and low cost alternative amendments on the immobilization and phytoavailability of Cd and Pb in a contaminated floodplain soil. Ecological Engineering, 74:319–326.
  40. Sparks, D. L. 2003. Environmental soil chemistry. Academic Press. San Diego
  41. Sun, Y., Li, Y., Xu, Y., Liang, X., and Wang L. 2015. In situ stabilization remediation of cadmium (Cd) and lead (Pb) co-contaminated paddy soil using bentonite. Applied Clay Science, 105–106, 200–206.
  42. Sun, Y., Sun, G., Xu, Y., Liu, W., Liang, X., and Wang, L. 2016. Evaluation of the effectiveness of sepiolite, bentonite, and phosphate amendments on the stabilization remediation of cadmiumcontaminated soils. Journal of Environmental Management, 166: 204-210.
  43. Tessier, A., Campbell, P.G.C., and Bisson, M., 1979. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51 (7): 844–850.
  44. Usman, A.R.A., Sallam, A.S., Al-Omran, A, El-Naggar, A.H., Alenazi, K.K.H., Nadeem, M., and Al-Wabel, M.I. 2013. Chemically modified biochar produced from conocarpus wastes, an efficient sorbent for Fe(II) removal from acidic aqueous solutions. Adsorption Science and Technology, 31: 625–640.
  45. Walkley, A., and Black, I.A. 1934. An examination degtijarf method for determination for role organic matter and proposed modification of the chromic acid titration method. Soil Science, 37:29–38.
  46. Yuan, J.H., Xu, R.K., and Zhang, H. 2011. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technology, 102:3488–3497.
  47. Zhang, R.H., Li, Z.G., Liu, X.D., Wang, B.C., Zhou, G.L., Huang, X.X., Lin, C.F., and Wang, A.H. 2017. Immobilization and bioavailability of heavy metals in greenhouse soils amended with rice straw-derived biochar. Ecological Engineering, 98: 183–188.
  48. Zhang, X., Wang, H., He, L., Lu, K., Sarmah, A., Li, J., Bolan, N.S., Pei, J., and Huang, H. 2013. Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. Environmental Science Pollution Research, 20:8472–8483.