ارزیابی قابلیت روش طیف‌سنجی در تخمین برخی ویژگی‌ خاک‌های مبتلا به نمک

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه کردستان، ایران

2 استادیار گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه کردستان، ایران

چکیده

تهیه منحنی‌های انعکاس طیفی پدیده‌های مورد نظر در محدوده طول ‌موج‌های مشخص طیف‌سنجی گفته می‌شود. طیف سنجی مرئی- مادون قرمز نزدیک روشی غیرمستقیم، ارزان، سریع، دارای حداقل آماده‌سازی نمونه‌ها و تکرار پذیری مناسب است. هدف از این پژوهش ارزیابی طیف‌سنجی انعکاسی در برآورد برخی ویژگی‌های خاک‌های مبتلا به نمک در استان کردستان می‌باشد. بدین منظور تعداد 100 نمونه خاک در 20 کیلومتری شهرستان قروه در استان کردستان جمع آوری و ویژگی‌های آن‌ها از قبیل هدایت الکتریکی، اسیدیته، نسبت جذب سدیم، ماده آلی، کربنات کلسیم و پایداری خاکدانه اندازه‌گیری شد. آنالیز طیفی نمونه خاک‌ها با استفاده از دستگاه طیف‌سنجی زمینی با طول موج 350تا2500 نانومتر با استفاده از نرم‌افزار RS3 اندازه گیری و ثبت شد. پس از ثبت طیف‌ها روش‌های مختلف پیش‌پردازش مورد ارزیابی قرار گرفت. سپس از رگرسیون خطی چندگانه و شبکه عصبی مصنوعی برای پیش‌بینی ویژگی‌های خاک استفاده گردید. نتایج نشان داد که بهترین روش پیش پردازش داده‌های طیفی، ﻣﺸـﺘﻖ ﺍﻭﻝ+ ﻓﻴﻠﺘﺮ ﺳﺎﻭﻳﺘﺰﮐﻲ ﻭ ﮔﻼﻱ + فیلتر میانه + متغیر نرمال استاندارد می‌باشد. بر اساس مقایسه آماره ضرییب تبیین میان دو مدل شبکه عصبی مصنوعی و رگرسیون خطی چندگانه (به ترتیب برای هدایت الکتریکی 88/0 – 45/0، اسیدیته خاک 25/0 – 13/0، نسبت جذب سدیم 59/0 – 23/0، ماده آلی 68/0 – 66/0، کربنات کلسیم 52/0 – 48/0 و پایداری خاکدانه 48/0 – 28/0)، شبکه عصبی مصنوعی نتایج بهتری در مقایسه با مدل رگرسیون خطی از خود نشان داد.

کلیدواژه‌ها


عنوان مقاله [English]

Assessing the capability of the spectrometry method in estimating some properties of salt-affected soils

نویسندگان [English]

  • Kamran Azizi 1
  • Kamal Nabiollahi 2
  • Masoud Davari 2
1 Soil Science and Engineering, University of kurdistan
2 Department of Soil Science and engineering, University of Kurdistan
چکیده [English]

Introduction Soil salinity and alkalization are recognized worldwide as a major threat to agriculture, particularly in arid and semi-arid regions. To manage these soils a lot of data are needed and laboratory measurement is costly and time-consuming. Therefore, indirect methods that are cheap, fast and easy to access are one of the research priorities. One of these methods is visible near infrared diffuse reflectance spectroscopy. Visible and near infrared diffuse reflectance spectroscopy is a time and cost-effective approach that has been successfully used for characterizing soil properties.
Materials and Methods The study area is located in Kurdistan Province, about 20 km northeast of Ghorveh city, west of Iran, and covers 260 km2. Average annual precipitation and temperature are 369.8mm and 10.8 °C, respectively. Soil moisture and temperature regimes are Xeric and Mesic, respectively. In the study area, 100 soil samples were collected (0–30 cm depth). The main land use types consist of cropland and rangeland. The soil samples were air-dried at room temperature and then, passed through a 2mm sieve. EC, pH, SAR, OC, CaCO3 and ΔMWD were measured. Sodium Adsorption Ratio (SAR) was calculated using results from the saturated paste extracts of sodium, calcium, and magnesium. The stability aggregate was measured using the difference between distributions of particle size in dry and wet sieve methods. Spectral analysis of soil samples was done using a spectrophotometric instrument with a wavelength of 350 to 2500 nm and recorded using RS3 software. After recording the spectra, different preprocessing methods were evaluated. Two models of multiple linear regression and artificial neural network were used to predict soil properties using spectral data.
Results and Discussion The soil salinity of the study area ranged between low and high. The highest amount of salinity was observed in the center, south and southwest of the study area and the least amount of salinity was observed in northwest, southeast, northeast and north. The maximum amounts of acidity and sodium adsorption ratio showed that the central part of the study area has saline and sodium soils. The results showed that the best method for preprocessing of spectral data is the 1st Derivative + Savitzky-Golay filter + Mean center + SNV. The Pearson correlation coefficient between the soil properties and the spectral reflection values for each wavelength in the range of 2450-400 nm showed that there is a relatively high correlation between the measured characteristics and the spectral values of the soil. The results showed that the correlation coefficient can be positive or negative. The maximum positive correlation coefficients for electrical conductivity, soil acidity, sodium adsorption, organic carbon, calcium carbonate and aggregate stability at the wavelengths 1229, 2397, 2399, 1298, 2090, 2014, and two spectra 2257 and 660 were 0.45**, 0.43**, 0.46**, 0.61**, 0.53** and 0.40**, respectively. The maximum negative correlation coefficients for electrical conductivity, soil acidity, sodium adsorption ratio, organic carbon, calcium carbonate and aggregate stability at the wavelengths 630, 2289, 630, 1904, 1379 and 2107 were -0.47**, -0.42**, -0.44**, -0.46**, -0.55** and -0.44**, respectively. Based on the determination coefficient statistic, artificial neural network model (0.88, 0.25, 0.59, 0.68, 0.52 and 0.48 to electrical conductivity, PH, SAR, calcium carbonate and aggregate stability, respectively) had better results compared to the multiple linear regression model (0.45, 0.13, 0.23, 0.66, 0.48 and 0.28 to electrical conductivity, PH, SAR, calcium carbonate and aggregate stability, respectively).
Conclusion In this study, visible near infrared diffuse reflectance spectroscopy was evaluated to estimate some properties of salt-affected soils. After recording the spectral data, the continuity curve and pre-processing of spectral data were performed. The results showed that the best method for pre-processing of spectral data is the first derivative + Savitzky filter and Glair + Mid filter + Normal standard variable. Multiple linear regression and artificial neural network models were used to estimate some properties of salt-affected soils (EC, pH, SAR, OC, CaCO3 and ΔMWD) using spectral data. Based on the statistics of mean error, root mean squared error, and correlation coefficient, the artificial neural network model had better results in estimateing the properties of salt-affected soils compared to the multiple linear regression model. Therefore, based on these findings it is suggested that soil spectral data be used as an indirect method to the estimate soil properties.

کلیدواژه‌ها [English]

  • soil salinity and alkalinity
  • Artificial neural network
  • Linear Regression
  • Ghorveh
  1. Abasi, M., Darvish, A. and Shapman, M. 2010. Spectral reflection curve of Northern rice cultivars in red edge region. Geomatics Conferences and Exhibitions. (In Persian)
  2. Aldabaa, A. A. A., Weindorf, D. C., Chakraborty, S., Sharma, A. and Li, B. 2015. Combination of proximal and remote sensing methods for rapid soil salinity quantification. Geoderma, 34(46): 229–240
  3. Allison LE and Moodie CE 1965. Carbonate. In: Black CA et al. (ed). Methods of Soil Analysis, Part 2. (Agronomy 9). (pp. 1379-1400). Madison, WI, USA: Am. Soc. of Agron.
  4. Babaeian, E., Homaee, M. and Norouzi, .A.A.2014. Evaluation of spectral transfer functions and soil transfer functions in predicting soil water retention. Protection of Water Resources, 3(2): 25-42. (In Persian)
  5. Babaeian, E., Homaee, M., Montzka, C., Vereecken, H. and Norouzi, A.A. 2015. Towards retrieving soil hydraulic properties by hyperspectral remote sensing. Vadoze Zone Journal, 14(3), doi: 10.2136/ vzj2014.07.0080.
  6. Ben-Dor, E. and Banin, A. 1995. Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties. Soil Science Society of America Journal, 59: 364-372
  7. Bilgili, A. V., Van Es, H. M., Akbas, F., Durak, A. and Hively, W. D. 2010. Visible-near infrared reflectance spectroscopy for assessment of soil properties in a semi-arid area of Turkey. Journal of Arid Environments, 74(2): 229-238.
  8. Canasveras, J.C., Barron, V., Del Campillo, M. C., Torrent, J. and Gomez, J.A. 2010. Estimation of aggregate stability indices in Mediterranean soils by diffuse reflectance spectroscopy. Geoderma, 158: 78-84.
  9. Curran, P. J., Dungan, J. L. and Peterson, D. L. 2001. Estimating the foliar biochemical concentration of leaves with reflectance spectrometry: testing the Kokaly and Clark methodologies. Remote Sensing of Environment, 76(3): 349-359.
  10. Chang, C. W., Laird, D. A., Mausbach, M. J. and Hurburgh, C. R. 2001. Near-infrared reflectance spectroscopy–principal components regression analyses of soil properties. Soil Science Society of America Journal, 65(2): 480-490.
  11. Clark, R. N., King, T. V. V., Klejwa, M., Swayze, G. A. and Vergo, N. 1990. High spectral resolution reflectance spectroscopy of minerals. Journal of Geophysical Research, 95: 12653–12680.
  12. Dalal, R. C. and Henry, R. J. 1986. Simultaneous determination of moisture, organic carbon and total nitrogen by near infrared reflectance spectrophotometry. Soil Science Society of America Journal, 50: 120–123.
  13. Daniel, K. W., Tripathi, N. K. and Honda, K. 2003. Artificial neural network analysis of laboratory and in situ spectra for the estimation of macronutrients in soils of Lop Buri (Thailand). Soil and Tillage Research, 41: 47–59
  14. Farifteh, J., Farshad, A. and George, R. J. 2006. Assessing salt-affected soils using remote sensing, solute modelling, and geophysics. Geoderma, 130(3), 191-206.
  15. Genot, V., Colinet, G., Bock, L., Vanvyve, D., Reusen, Y. and Dardenne, P. 2011. Near infrared reflectance spectroscopy for estimating soil characteristics valuable in the diagnosis of soil fertility. Journal of Near Infrared Spectroscopy, 19: 117-138.
  16. Gomez, C., Lagacherie, P. and Coulouma, G. 2012. Regional predictions of eight common soil properties and their spatial structures from hyperspectral Vis–NIR data. Geoderma, 189: 176-185.
  17. Gomez, C., Lagacherie, P., Coulouma, G. 2008. Continuum removal versus PLSR method for clay and calcium carbonate content estimation from laboratory and airborne hyperspectral measurements. Geoderma, 148: 141-148.
  18. Hillel, D. 2004. Introduction to Environmental Soil Physics. Elsevier, Amsterdam. 494- 512.
  19. Janik, L.J., Forrester, S.T. and Rawson, A. 2009. The prediction of soil chemical and physical properties from mid infrared spectroscopy and combined partial least-squares regression and neural networks (PLS-NN) analysis. Chemometrics and Intelligent Laboratory Systems, 97:179-188.
  20. Karimi, S., Davari, M., Bahrami, H., Babaeian, E. and Hosini, M. 2016. Estimation of some soil baseline characteristics by near-infrared visible spectroscopy in Kurdistan province. Iran Water and Soil Research. 48(3): 573-585 (In Persian).
  21. Kensuke, K., Tsujimoto, Y., Rabenarivo, M., Asai, H., Andriamananjara, A. and Rakotoson, T. 2017. Vis-NIR Spectroscopy and PLS Regression with Waveband Selection for Estimating the Total C and N of Paddy Soils in Madagascar. MDPI-Remote Sensing, 10: 142-155.
  22. Khalilimoqadam, B., Afuni, M., Jalaleian, A., Abaspor, K. and Dehqani, M. 2014. Application of Regression and Neural Networks Methods for Estimating Hydraulic Conductivity of Saturated Soil in Central Zagros Region. Journal of Agricultural Science and Technology, Water and Soil Science, 71: 217-227 (In Persian).
  23. Kuang, B., Tekin, Y. and Mouazen, M. A. 2015. Comparison between artificial neural network and partial least squares for on-line visible and near infrared spectroscopy measurement of soil organic carbon, pH and clay content. Soil and Tillage Research, 146: 243-252.
  24. Kodaira, M. and Shibusawa, S. 2013. Using a mobile real-time soil visible-near infrared sensor for high resolution soil property mapping. Geoderma, 199: 64-79.
  25. Krystyna, M. K. and Sławomir, S. 2017. Application of neural networks in diagnostic’s of chemical compound’s based on theirs infrared spectra. DE GRUTER. 24: 107-118.
  26. Liu, X., Xu, J., Zhang, M., Si, B., and Zhao, K. 2008. Spatial variability of soil available Zn and Cu in paddy rice fields of China. Environmental Geology, 55: 1569-1576.
  27. Metternicht, G. I. and Zinck, J. A. 2003. Remote sensing of soil salinity: potentials and constraints. Remote sensing of Environment, 85(1): 1-20.
  28. Nanni, M. R. and Demattê, J. A. M. 2006. Spectral reflectance methodology in comparison to traditional soil analysis. Soil Science Society of America Journal, 70(2): 393-407.
  29. Nemati, F., Raeisi, F. and Hasanpoor, A. 2013 Aggregate stability in different treatments of salinity and soil organic matter in the presence of earthworms under greenhouse conditions. Journal of Water and Soil Studies, 19(1): 41-60 (In Persian).
  30. Nelson, R. E. 1982. Carbonate and gypsum. In: A.L. Page R.H. Miller and R. Keeny. (ed). Methods of soil analysis. Part 2-chemical and microbiological properties. (pp181-196). Madison, WI.
  31. Nelson, P. N., Baldock, J. A., Clarke, P., Oades, J. M. and Charchman, G. J. 1999. Dispered clay and organic matter in soil: their nature and association. Australian Journal of Soil Research, 37: 289-315.
  32. Nocita, M., Stevens, A., Noon, C., van Wesemael, B. 2013. Prediction of soil organic carbon for different levels of soil moisture using Vis-NIR spectroscopy. Geoderma, 199: 37-42.
  33. Savvides, A., Corstanje, R., Baxter, S. J., Rawlins, B. G. and Lark, R. M. 2010. The relationship between diffuse spectral reflectance of the soil and its cation exchange capacity is scale-dependent. Geoderma, 154: 353-358.
  34. Schaap, M. G., Leij, F. J. and Van Genuchten, M. T. 1998. Neural network analysis for hierarchical prediction of soil hydraulic properties. Soil Science Society of America Journal, 62: 847-855.
  35. Sorenson, P. T., Quideau S. A. and Rivard, B. 2018.  High resolution measurement of soil organic carbon and total nitrogen with laboratory imaging spectroscopy. Geoderma, 315(1): 170-177.
  36. Sokouti, R., Mahdiad, M. and Mahmoodi, S. 2008. Comparing of the application of some geostatistic method to predict the variability of soil salinity, a case study of Urmieh Plain. Pajauhesh and Sazandegi, 74: 90-98.