نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری علوم خاک، گروه علوم خاک دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

2 دانشیار گروه علوم خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

3 استادیار گروه علوم خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

چکیده

برای بررسی پیامد کاربرد باکتریی­های بردبار به نمک، زغال زیستی و گچ بر پاسخ­های آنزیمی و ناآنزیمی جو در تنش شوری، آزمایشی با طرح کاملا تصادفی به­گونه فاکتوریل با سه تکرار در گل­خانه­ در سال 1395-96 انجام شد. تیمارهای پژوهش 1) جدایه­های باکتریای بردبار به نمک (بدون باکتری،T0، باکتری megaterium Bacillus (T5)، باکتری licheniformis Bacillus (T17))، 2) بیوچار (0 و 5% وزنی/وزنی) و 3) آب‌شویی خاک (بدون آب‌شویی و آبشویی) و 4) کاربرد گچ (0و50 درصد نیاز گچی) بود. نتایج این پژوهش نشان داد که به­کارگیری باکتری و زغال زیستی مایه کاهش کارایی آنزیم­های آنتی­اکسیدانی در گیاه جو می­شود. این کاهش در تیمارهای آب‌شویی شده بیشتر بوده است. همچنین گیاهان مایه­زنی شده با هردو باکتری، دارای بیشترین غلظت پـرولین بودند که این اندازه در باکتریT17 (Bacillus licheniformis) وهمراه با زغال زیستی و گچ به گونه چشم­گیری بیشتر بوده است. بهره­گیری از بهساز زغال زیستی، گچ و مایه­زنی با جدایه‌ها مایه افزایش پایداری پرده یاخته­ای شده است که بیشترین افزایش در تیمارهای مایه­زنی شده با جدایه باکتریT17 Bacillus licheniformiدرخاک آب‌شویی شده با 50% نیاز گچی دیده شد. روی­هم­رفته این پژوهش نشان داد که بهره­گیری از زغال زیستی، گچ و باکتری­های بردبار در برابر نمک، می­تواند ابزار کارایی در کاهش پیامد بد شوری بر گیاه شود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

The effects of ealotolerant bacteria and biochar on antioxidant enzyme activity in barley under saline stress

نویسندگان [English]

  • Maryam Talebi Atouei 1
  • mohsen olamaee 2
  • REZA GHORBANI NASRABADI 3
  • seyed alireza movahedi Naeini 2

1 Ph.D.student, Dept. of Soil Science, Gorgan University of Agricultural Sciences and Natural Resources

2 stafe of soil and water department

3 Gorgan University of Agricultural Sciences and Natural Resources,09112701384

چکیده [English]

Introduction Salinity is the most important challenge in arid and semi-arid regions. Salt stress, ionic and osmotic components, like other abiotic stresses, lead to oxidative stress that damage cellular membranes, nucleic acids, oxidizing proteins, and causing lipid peroxidation through overproduction of reactive oxygen species (ROS). Antioxidant capacities and osmolytes play a vital role in protecting plants from salinity that causes oxidative damages. Applying biological methods such as using of halotolerant plant growth promoting rhizobacteria (PGPR) is very important to reducing the harmful effects of salinity on plants. Also exopolysaccharide production by plant growth-promoting strains helps in binding cations, including Na+, and thus decreases the content of Na+ available for plant uptake. This is especially useful for alleviating saline stress in plants.
Biochar can also alleviate the negative impacts of salt stress in crops. Biochar can enhance plant growth either by its direct or indirect mechanisms of actions. The direct growth promotion relates to supplying mineral nutrients, such as Ca, Mg, P, K and S etc., to the plant, whereas, indirect mechanisms involve improving soil physical, chemical and biological characteristics.
Materials and Methods In this research, the effect of halotolerant plant growth promoting bacteria, biochar and gypsum was investigated on enzymatic and non-enzymatic defense mechanisms of barley such as Catalase, Superoxide Dismutase, Proline and Membrane stability under salinity stress. The experiments were carried out as a factoria with a completely randomize design in greenhouse conditions for 2016-2017. The factors included: bacteria (without inoculation (T0), bacterial isolate T5 (megaterium Bacillus), bacterial isolate T17 (licheniformis Bacillus ), biochar (0 and 5percent w/w), gypsum ( 0and 50 percent gypsum requirement ) and soil leaching (without and leaching with) with three replications. The activity of catalase (CAT) was determined by changes in absorbance at 240 nm (IUg−1FW) (Aeby, 1984). Superoxide dismutase (SOD) activity was determined by nitroblue tetrazolium (NBT) reduction, according to Minami and Yoshikawa (1979) and the enzyme activity was expressed as (IUg−1FW). Proline content was estimated according to Bates et al., (1973) and expressed as µ mol g−1 fresh weight (FW). Membrane stability was estimated according to Sairam and. Saxena (2001). All statistical analyses were performed using SAS software. The means of different treatments were compared using LSD (P ≤0.05) test.
Results and Discussion The results showed that using halotolerant bacteria and biochar reduced the activity of antioxidant enzymes in barley plants. This reduction was higher in the treatment containing bacteria T17 (Bacillus licheniformis) biochar and with leaching. Also, inoculated plants with both bacteria had the highest concentration of proline, which was significantly higher in the treatment containing bacteria T17 (Bacillus licheniformis) biochar and gypsum. Also, application of halotolerant bacteria, biochar and gypsum improved the membrane stability of plant. This increase has been remarkable in inoculated treatments with T17 bacteria (Bacillus licheniformi) in saline soil with leaching associated with 50 percent gypsum requirement
Conclusion Generally, results showed that halotolerant bacteria, biochar and gypsum can be used as a tool for reducing adverse effects of salt stress. Inoculation of soil with these bacteria has helped in alleviating saline stress by changing several physiological, enzymatic, and biochemical agents in plant. Bio-remediation of salt affected soils is one of the cheap and eco-friendly approaches for remediation of salt affected lands as the traditional physical and chemical techniques are becoming costly. The plant growth promoting halotolerant bacteria helps in Bio-remediation of salt affected soils and thereby improving the agricultural crop yields.
Incorporation of biochar into salt-affected soil could diminish salinity stress by decreasing soil bulk density, increasing in soil cation exchange capacity, potassium and calcium concentrations, water holding capacity and nutrient and water availability in soil. Also, bichar due to high organic matter content can play a dramatic role in salt affected soil with organic compound defficiency. According to these amended features of biochar in soil, we suggest, more experiments conducted by biochar with different material and ratios under saline - sodic soils.

کلیدواژه‌ها [English]

  • Bacillus
  • Biochar
  • Catalase
  • Proline
  • Saline-Sodic Soil
  • Superoxide Dismutase
  1. Abbas, H.H., Ali, M.E., Ghazal, F.M., and El-Gaml, N.M. 2015. Impact of Cyanobacteria Inoculation on Rice (Orize sativa) Yield Cultivated in Saline Soil. Journal of American Science, 11(2):13-19.
  2. Aebi, H., 1984. Catalase in vitro. Methods in Enzymology, 105, 121–126.
  3. Akhtar, S., Andersen, M N., Iu, F. 2015. Residual effects of biochar on improving growth, physiology and yield of wheat under salt stress. Agricultural Water Management, 15: 861–868.
  4. Babaeian Jelodar, N., and ZiaTabar Ahmadi, M. 2002. Plant Growth in Salt Lands (Translation). Mazandaran University Press. Mazandaran.408 pp (in Persian)
  5. Bates, L.S., Waldren, R.O., and Teare, I.D. 1973. Rapid determination of free proline for waterstress studies. Plant and Soil, 39: 205-207.
  6. Dat, J., Vandenabeele, S., Vranova, E., Van Montagu, M., Inze, D., and Van Breusegem, F. 2000. Dual action of the active oxygen species during plant Stress Responses. Cellular and Molecular Life Sciences, 57: 779-795.
  7. Deshwal, VK., Kumar, P. 2013. Effect of salinity on growth and PGPR activity of Pseudomonads. Journal of Academia and Industrial Research, 2(6):353-356.
  8. Farhangi- Abriz, S., Torabian, SH. 2017. Antioxidant enzyme and osmotic adjustment changes in bean seedlings as affected by biochar under salt stress. Ecotoxicology and Environmental Safety, 137: 64–70
  9. Gossett, DR., Millhollon, EP., and Lucas, MC. 1994. Anti oxidant response to NaCl stress in Salt-tolerant and Salt-sensitive cultivars of cotton. Crop Science, 34: 706-714.
  10. Grover, M., Ali, S.Z., Sandhya, V., Rasul, A., and Venkateswarlu, B. 2011. Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World Journal of Microbiology and Biotechnology, 27(5): 1231-1240
  11. Haefele, S., Konboon, Y., Wongboon, W., Amarante, S., Maarifat, A., Pfeiffer, E., Knoblauch, C., 2011. Effects and fate of biochar from rice residues in rice-based systems. Field Crops Research, 121(3):430-441.
  12.  Hajinia, S., Zarea, M.J. 2014. Effect Of Co-Inoculation Of Endophytic Fungus Piriformospora Indica And Azospirillum Strains On Some Physiological Traits, Nutrient Absorption And Grain Yield Of Wheat (Triticum Aestivum Cv. Sardari) Under Salt Stress Conditions. Plant Products Technology (Agricultural Research), 14 (2); 149 -161. (in Persian)
  13. Jensen H L., 1951. Notes on the biology of Azotobacter. Journal of Applied Microbiology, 14 (1): 89-94
  14. Kamalnejad, J., S. Farrahi-Aschtiani and F. Ghanati. 2006. The effects of salinity and potassium on growth and proline accumulation in two barley cultivars. Journal of Agricultural Science and Natural Resources, 13(1): 58-66. (in Persian)
  15. Kim, HS., Kim, KR., Yang, JE., Ok, YS., Owens, G., Nehls, T., Wessolek, G.,and Kim, KH. 2016. Effect of biochar on reclaimed tidal land soil properties and maize (Zea mays L.) response. Chemosphere, 142: 153–159.
  16. Kohler, J., Hernandez, J.A., Caravaca, F., and Roldan, A. 2009. Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress. Environmental and Experimental Botany, 65:245-252
  17. Lai, L., Ismail, M. R., Muharam, F. M., Yusof, M. M., Ismail, R., and Jaafar, N.M. 2017. Effects of Rice Straw Biochar and Nitrogen Fertilizer on Rice Growth and Yield. Asian Journal of Crop Science, 9 (4): 159-166.
  18. Lehmann, J., Rillig, M.C., Thies, J., Masiello, C.A., Hockaday, W.C., and Crowley, D. 2011. Biochar effects on soil biota: A review. Soil Biology and Biochemistry, 43: 1812-1836.
  19. Miller, KJ., and Woods, JR. 1996. Osmoadaptation by rhizosphere bacteria. Annual Review of Microbiology, 50: 101-136.
  20. Minami, M., and Yoshikawa, H. 1979. A simplified assay method of superoxide dismutase activity for clinical use. Clinica Chimica Acta, 92: 337–342.
  21. Mureiel, J. 1984. Free proline and reducing sugars accumulation in water stress. SerAgrincola, 29:39-46.
  22. Omar, M.N.A., Osman, M.E.H., Kasim, W.A., and Abd El-Daim, L.A. 2009. Improvement of salt tolerance mechanisms of barley cultivated under salt stress using Azospirillum brasilense. Salinity and Water Stress, pp.133-147.
  23. Pan, Y., Wu, L.J., and Yu, Z.L. 2006. Effect of salt and drought stress on antioxidant enzymes activities and SOD isoenzymes of liquorice (Glycyrrhiza uralensis fisch). Plant Growth Regulation, 49: 157-165.
  24. Pourbabaee, A.A., Bahmani, E., Alikhani, H.A. and. Emami, S. 2016. Promotion of Wheat Growth under Salt Stress by Halotolerant Bacteria Containing ACC deaminase. Journal of Agricultural Science and Technology, 18: 855-864
  25. Sairam, R.K. and. Saxena. D.C 2001. Oxidative stress and antioxidants in wheat genotypes: possible mechanism of water stress tolerance. Journal of Agronomy and Crop Science, 184: 55-61
  26.  Schultz, E., Chatterjee, A., DeSutter, T., and Franzen, D. 2017. Sodic Soil Reclamation Potential of Gypsum and Biocharadditions: Influence on Physicochemical Properties and Soil Respiration. Journal Communications in Soil Science and Plant Analysis, 48(15); 1792-1803.
  27. Tan, Y., Liang, Z.S., Hongbo, H.B., and Du, F. 2006. Effect of water deficits on the activity of anti-oxidative enzymes and osmoregulation among three different genotypes of Radix Astragali at graining stage. Colloids and Surfaces B: Biointerfaces, 49: 60-65.
  28. Tavakoli, F., Vazan, S., Sorkheh, K., Shakeri, E. 2016. Effect of Salinity Stress on Some Physiological Traits and Electrophoresis Pattern of Leaf Proteins of Two Barley Genotypes. Journal of Crop Production and Processing, 6 (19): 191-202. (in Persian)
  29. Thomas, S., Frye, S., Gale, N., Garmon, M., Launchbury, R., Machado, N., Melamed, S., Murray, J., Petroff, A., and Winsborough, C. 2013. Biochar mitigates negative effects of salt additions on two herbaceous plant species. Journal of Environmental Management, 129: 62-68.
  30. Tsai, WT., Liu, SC., Chen, HR., Chang, YM., and Tsai, YL. 2012. Textural and chemical properties of swinemanure-derived biochar pertinent to its potential use as a soil amendment. Chemosphere, 89(2): 198-203.
  31. Upadhyay, S. K., and Singh, D.P. 2015. Effect of salt-tolerant plant growth-promoting rhizobacteria on wheat plants and soil health in a saline environment. Plant Biology, 17: 288–293
  32. Upadhyay, S.K., Singh, J.S., and Singh, D.P .2011. Exopolysaccharide-producing plant growth-promoting rhizobacteria under salinity condition. Pedosphere, 21: 214-222.
  33. Vannozi G.a.L F. 2007. Proline accumulation during drought rhizogene in maise. Journal of Plant Physiology, 85: 441-467.
  34. Wu, Y., Xu, G., and Shao, H B. 2014. Furfural and its biochar improve the general properties of a saline soil. Solid Earth, 5: 665–671.
  35. Yan, P., Wu, L.J., and. Yu, Z. L. 2006. Effect of salt and drought stress on antioxidant enzymes activities and SOD isoenzymes of liquorice (Glycyrrhizauralensis fisch). Plant Growth Regulation, 49:157–165.
  36. Yao, L., Wu, Z., Zheng, Y., Kaleem, I., and Li, C. 2010. Growth promotion and protection against salt stress by Pseudomonas putida Rs-198 on cotton. European Journal of Soil Biology, 46:49-54.
  37. Younesi, O., Moradi, A. 2016. Effects of Arbuscular Mycorrhizal Fungus (AMF) on antioxidant enzyme activities in salt-stressed.wheat. Journal of Crops Improvement, 18) 1(; 21-30. (in Persian)