خصوصیات ژئوشیمی خاکهای قرمزرنگ فلات لسی شمال ایران به منظور شناسایی منشا آنها وبازسازی اقلیم گذشته

نوع مقاله: مقالات تحلیلی-تفسیری

نویسندگان

1 دانشگاه علوم کشاورزی و منابع طبیعی گرگان

2 هیئت علمی

3 هیات علمی دانشگاه گلستان

4 دانشگاه لانژو چین

چکیده

خاکهای قرمز رنگی در زیر برخی از لس‌های شمال کشور وجود دارد که برخلاف لس‌های بالایی مطالعه چندانی بر روی آنها صورت نگرفته است. در این مطالعه مقطعی به ارتفاع تقریبی 19 متر در فلات لسی شمال ایران و در شرق استان گلستان مورد مطالعه قرار گرفته است. این مقطع قرمز رنگ که در شمال شرقی روستای آق‌بند واقع شده است، بر روی سنگ آهک سازند آقچگیل حوزه رسوبی کپه‌داغ مربوط به اواخر پلایوسین و در زیر لس‌های شناخته‌شده مربوط به اواخر دوره پلیستوسن قرار دارد، و بر اساس مطالعات پالئومغناطیس صورت گرفته در فاصله زمانی 8/1 تا 4/2 میلیون سال قبل تشکیل شده است. دراین مقاله خصوصیات ژئوشیمیایی مربوط به خاکهای قرمز رنگ از منظر عناصر اصلی و نادر مورد بررسی قرار گرفته است و در مقایسه بعمل آمده با خصوصیات ژئوشیمیایی لس‌های بالایی، پوسته بالایی زمین و همچنین خاکهای قرمزرنگ بادرفتی کشور چین، علاوه بر اثبات بادرفتی بودن این خاکهای قرمز رنگ، مشخص گردید که انباشتگی رسوبات بادی در فلات لسی ایران از اوایل دوران پلیستوسن آغاز گردیده است. همچنین پس از بررسی و اثبات یکسان بودن منشا خاکهای قرمز و لس‌های فوقانی، به منظور بازسازی اقلیم گذشته و کمی نمودن میزان هوادیدگی شیمیایی از شاخص هوادیدگی CIA و نسبتهای Al2O3/Na2O، Na2O/K2O، MgO/TiO2 و Rb/Sr استفاده شد که در نهایت گرم و مرطوبتر بودن اقلیم زمان تشکیل خاکهای قرمز رنگ (اوایل پلیستوسن) را نسبت به زمان تشکیل لس‌های فوقانی (اواخر پلیستوسن) به اثبات رسانید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Geochemistry of the red soils in the Northern Iranian Loess Plateau and implications for its origin and paleoclimate reconstruction

نویسنده [English]

  • Mehdi Taheri 1
1 دانشگاه علوم کشاورزی و منابع طبیعی گرگا
چکیده [English]

Introduction During the last decade, considerable progress has been made in the study of known loess deposits and their paleoclimatic implications in Northern Iran, whereas little information is available about the red soils which are beneath the these loess. So, in this study, major and trace element concentrations were analyzed on the samples from a red sequence of Iranian Loess Plateau at Golestan province. The main objectives of this research are a) to address the origin of the red soils with compare to the other geochemical results such as upper Pleistocene loess-paleosol, upper continental crust and Jiaxian Red Clays in China, b)to examine the geochemical behaviors of certain elements and their ratios such as Al2O3/Na2O, Na2O/K2O, MgO/TiO2, Rb/Sr and Chemical Index of Alteration (CIA) during pedogenesis and finally, to reconstruct the early Pleistocene climate.
Materials and Methods This study was carried out on a 19-m-thick sequence of deposits exposed in a limestone quarry located near the Agh Band village of Golestan province in the east of the Iranian Loess Plateau (latitude 37.688889 N and longitude 55.158333 E). The so-called Agh Band red sequence underlies an upper Pleistocene loess-paleosol sequence and covers yellow limestone of the Akchagyl formation belonging to the Upper Pliocene of Kopet Dagh sedimentary basin. It is the first sequence one of red soils described for the loess plateau of Iran. Based on the paleomagnetically dating, this section is formed during ~2.4-1.8 Ma. The present-day climate of the study area is semi-arid, with mean annual precipitation and temperature of ca. 300 mm and 17◦ C, respectively. The soil moisture regime is Xeric-Aridic and the temperature regime is Thermic. In a field campaign in autumn 2014 the morphological characteristics of the section were recorded. Based on field observations, the sequence has been subdivided into 24 units, designated consecutively as U1-U24 from the top of limestone to the bottom of the Upper Pleistocene Loess. From each unit, representative samples were taken for color measurements, grain-size and geochemical analysis. Each air-dried sample was gently crushed, taking care not affect the grain size, and then measured using a Konica-Minolta CM-700 color meter. Grain size was measured using a Malvern Mastersizer 2000 laser grain-size analyzer following the pre-treatment procedures described in the text and the concentrations of major and trace elements were determined using a PANalytical PW2403/00 X-ray fluorescence spectrometer. All of the measurements were made in the Key Laboratory of Western China’s Environmental systems, Lanzhou University.
Results and Discussion The grain-size distribution of the red section is dominated by fine-grained silts with the average of 86.6 percent, in addition, the amount of clay and sand are 10.9 and 2.6 percent, respectively. Angular or sub-angular blocky structures are dominated in the red sequence. The section is mainly characterized by alternations of reddish yellow )10 YR 6/6) and brownish-red (7.5 YR 3/6) to reddish (5YR) layers. In general, the color of the soil horizons in the red deposits is much redder than that in the overlying loess (7.5YR vs.10YR, respectively), and this is one of the principal differences between the red soils and the overlying loess. Another different is the amount of carbonate nodules and the size of them (up to~20 cm diameter). These soils have been subjected to relatively intensive pedogenesis, as demonstrated by the presence of clay skins and Fe-Mn coatings. The high correlation of major and trace element compositions between Agh Band red soils section, upper loess and paleosol and the Jiaxian red clay in China supports the proposal that the Agh Band red soils was wind-blown in origin. The value of CIA index (69.6 for red soils versus 59.8 for the upper loess deposits), Al2O3/Na2O, K2O/Na2O and Rb/Sr ratios are higher in the red deposits than in the upper Pleistocene loess, also, the lower amount of MgO/TiO2 ratio in reddish soils, suggesting stronger chemical weathering and thus a wetter climate during the formation of red soils in early Pleistocene.
Conclusion Finally, our main findings are as follows: 1) The geochemical composition of the red-colored sedimentsis similar to the overlying upper Pleistocene loess suggesting a similar origin; 2) wind-blown origin of the red deposits and continuous atmospheric dust deposition in the Iranian Loess Plateau during the Early Pleistocene; 3) red soil sequence formed under wetter and more humid climate compared with the Upper Pleistocene loess.

کلیدواژه‌ها [English]

  • Iranian loess plateau
  • Red soils
  • Golestan
  • Geochemistry
  • Paleoclimate
  1. Bahlburg, H., and Dobrzinski, N. 2009. A review of the Chemical Index of Alteration (CIA) and its application to the study of Neoproterozoic glacial deposits and climate transitions. The Geological Record of Neoproterozoic Glaciations. Geological Society, London, Memoir.
  2. Bock, B., McLennan, S.M., and Hanson, G.N. 1998. Geochemistry and provenance of the Middle Ordovician Austin Glen Member (Normanskill Formation) and the Taconian Orogeny in New England. Sedimentology, 45: 635–655.
  3. Chen, J., Wang, H. T. and Lu, H. Y. 1996. Behaviors of REE and other trace elements during pedological weathering-evidence from chemical leaching of loess and paleosol from the Luochuan section in central China. Acta Geologica Sinica, 70: 61-72.
  4. Chen, Y., Chen, J., and Liu, L.W. 2001. Chemical composition and characterization of chemical weathering of late tertiary red clay in Xifeng, Gansu province. Journal of Geomechanics, 7 (2): 167-175 (in Chinese).
  5. Dasch, E. J. 1969. Strontium isotopes in weathering profiles, deep-sea sediments and sedimentary rocks. Geochimica et Cosmochimica Acta, 33: 1521-1552.
  6. Ding, Z. L., Sun, J. M., Liu, T. S., Zhu, R. X., Yang, S. L., and Guo, B. 1998. Wind-blown origin of the Pliocene red clay formation in the Chinese Loess Plateau. Earth and Planetary Science Letters, 161: 135-143.
  7. Ding, Z.L., Sun, J.M., Yang, S.L. and Liu, T.S. 2001. Geochemistry of the Pliocene red clay formation in the Chinese Loess Plateau and implications for its origin, source provenance and paleoclimate change. Geochimica et Cosmochimica Acta, 65(6):.901-913.
  8. Duzgoren-Aydin N. S., Aydin, A., and Malpas, J. 2002. Re-assessment of chemicalweathering indices: case study on pyroclastic rocks of Hong Kong. Engineering Geology, 63(1-2): 99-119.
  9. Forte, A.M., and Cowgill, E. 2013. Late Cenozoic base-level variations of the Caspian Sea: a review of its history and proposed driving mechanisms. Paleogeography, Paleoclimatology, Paleoecology, 386: 392-407.
  10. Frechen, M., Kehl, M., Rolf, C., Sarvati, R., and Skowronek, A. 2009. Loess chronology of the Caspian lowland in northern Iran. Quaternary International, 198: 220-233.
  11. Gallet, S., Jahn, B., and Torii, M. 1996. Geochemical characterization of the Luochuan loess–paleosol sequence, China, and paleoclimatic implications. Chemical Geology, 133: 67-88.
  12. Gallet, S., Jahn, B., Van Vliet Lanoe¨ , B., Dia, A., and Rosello, E. 1998. Loess geochemistry and its implications for particle origin and composition of the upper continental crust. Earth and Planetary Science Letters, 156: 157-172.
  13. Guo, Z., Ruddiman, W.F., Hao, Q.Z., Wu, H.B., Qiao, Y.S., Zhu, R.X., Peng, S.Z., Wei, J.J., Yuan, B.Y., and Liu, T.S. 2002. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature, 416: 159-163.
  14. Jahn, B., Gallet, S., and Han, J. 2001. Geochemistry of the Xining, Xifeng and Jixian sections, Loess Plateau of China: eolian dust provenance and paleosol evolution during the last 140 ka. Chemical Geology, 178: 71-94.
  15. Ji, H.B., Ouyang, Z.Y., and Wang, S.J. 2000. Element geochemistry of weathering profile of dolomite and its implications for the average chemical composition of the upper-continental crust, case studies from the Xinpu profile, northern Guizhou Province, China. Science in China, Series D: Earth Sciences, 43: 23- 35.
  16. Kahmann, J.A., Seaman, J., and Driese, S.G. 2008. Evaluating trace elements as paleoclimate indicators: multivariate statistical analysis of Late Mississippian Pennington Formation paleosols, Kentucky, U.S.A. Journal of Geology, 116: 254-268.
  17. Lauer, T., Frechen, M., Vlaminck, S., Kehl, M., Lehndorff, E., Shahriari, A., and Khormali, F. 2016. Luminescence-chronology of the loess palaeosol sequence Toshan, Northern Iran-A highly resolved climate archive for the last glacialeinterglacial cycle. Quaternary International, ………………….
  18. Lu, H. Y. and An, Z. S. 1997. Experimental study on the influence of different pretreatment procedures on the particle-size measurement of loess sediments. Chinese Science Bulletin, 42: 2535-2538.
  19. Mahmoudi, M;. 2012. Genesis, classification and properties of soils formed in different parent materials in Golestan Province. Master thesis, Gorgan University of Agricultural Sciences and Natural Resources.
  20. McLennan, S.M., Hemming, S., McDaniel, D.K., and Hanson, G.N. 1993. Geochemical Approaches to Sedimentation, Provenance and Tectonics. In: Johnsson, M.J., Basu, A. (Eds.), Processes Controlling the Composition of Clastic Sediments, Geological Society of America Special Paper, 284: pp. 21-40.
  21. Nesbitt, H.W., and Young, G.M. 1989. Formation and diagenesis of weathering profiles. The Journal of Geology, 97 (2): 129-147.
  22. Oh N.H., and Richter D.D. 2005. Elemental translocation and loss from three highly weathered soil-bedrock profiles in the southeastern United States. Geoderma, 126(1-2): 5-25.
  23. Price J. R. and M.A. Velbel. 2003. Chemical weathering indices applied toweathering profilesdeveloped on heterogeneous felsic metamorphic parent rocks. Chemical Geology, 202(3-4): 397-416.
  24. Qingyu, G., Baotian, P., Hongshan, G., Na, L., Hui, Z. and Junping, W. 2008. Geochemical evidence of the Chinese loess provenance during the Late Pleistocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 270(1): 53-58.
  25. Rollinson, H.R. 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman Scientific, Technical Press, London.
  26. Soil Survey Staff. 2014. Keys to Soil Taxonomy, twelfth ed. United States Department of Agriculture, Natural Resources Conservation Service.
  27. SWRI-Soil and Water Research Institute of Iran. 2000. Soil Resources and Use Potentiality Map of Iran (1:1 000 000), Tehran.
  28. Taheri, M., Khormali, F., Wang, X., Amini, A., Wei, H., Kehl, M., Frechen, M. and Chen, F. 2016. Micromorphology of the lower Pleistocene loess in the Iranian Loess Plateau and its paleoclimatic implications. Quaternary International.
  29. Tao, J., Chen, M.T., and Xu, S. 2006. A Holocene environmental record from the southern Yangtze River delta, eastern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 230(3): 204-229.
  30. Taylor, S.R., and McLennan, S.M. 1985. The Continental Crust: its Composition and Evolution. An Examination of the Geochemical Record Presserved in Sedimentary Rocks. Black well Scientific Publication, Oxford London.
  31. Varga, A., Újvári, G., and Raucsik, B. 2011. Tectonic versus climatic control on the evolution of a loess–paleosol sequence at Beremend, Hungary: an integrated approach based on paleoecological, clay mineralogical, and geochemical data. Quaternary International, 240(1):.71-86.
  32. Wacha, L., Pavlakovic, S.M., Frechen, M., and Crnjakovic, M. 2011. The loess chronology of the Island of Susak, Croatia. Quaternary Science Journal, 60: 153-169.
  33. Wang, X., Wei, H.T., Taheri, M., Khormali, F., Danukalova, G., and Chen, F.H. 2016. Early Pleistocene climate in western arid central Asia inferred from loess palaeosol sequences. Scientific Reports, 6: 20560. http://dx.doi.org/10.1038/ srep20560.
  34. Yang, S. L., Ding, F., and Ding, Z. L. 2006. Pleistocene chemical weathering history of Asian arid and semi-arid regions recorded in loess deposits of China and Tajikistan. Geochimica et Cosmochimica Acta, 70: 1695-1709.
35- Yang, S.Y., Li, C.X., Yang, D.Y., and Li, X.S. 2004. Chemical weathering of the loess deposits in the lower Changjiang Valley China, and paleoclimatic implications. Quaternary International, 117: 27-34.