نوع مقاله : کاربردی

نویسندگان

1 دانشجوی سابق کارشناسی ارشد گروه خاکشناسی، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران

2 دانشیارگروه خاکشناسی، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران

3 استادیار گروه خاکشناسی، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران

چکیده

برای جداسازی باکتریهای انحلال کننده روی از منبع اکسید روی نمونه خاک از ریزوسفر ذرت تهیه و با استفاده از محیط کشت جامد و مایع دارای روی از منبع اکسید روی غربال‌گری شدند. 50 جدایه باکتری از ریزوسفر ذرت جداسازی شدند. که از بین این جدایه‌ها 16 جدایه که دارای شاخص حلالیت روی یک و بالاتر بودند بر اساس خصوصیات مرفولوژیکی، بیوشیمیایی و فیزیولوژیکی برای مطالعات بیشتر انتخاب شدند. جدایه‌ای که دارای توانایی بیشتری در انحلال روی، فسفر، پتاسیم و تولید اکسین بود انتخاب و شناسایی شد. این stenotrophomonas maltophilia بودند. تاثیر جدایه Z14 بر رشد گیاه ذرت بررسی شد. این پژوهش در زیستگاه درون شیشه‌ای با آرایش فاکتوریل در قالب طرح کاملاً تصادفی در پنج تکرار انجام شد. فاکتورهای آزمایش شامل دو سطح باکتری B1 (شاهد)،B2 (stenotrophomonas maltophilia) و سه سطح کود سولفات روی Zn0 (بدون افزودن کود روی)، Zn20 (50 درصد نیاز گیاه) و Zn40 (100 درصد نیاز گیاه) بودند. بعد از یک دوره 20 روزه شاخص کلروفیل اندازه‌گیری و بخش هوایی و ریشه گیاه برداشت شد. صفات وزن تر و خشک اندام هوایی و ریشه، طول ریشه و بلندی گیاه اندازه‌گیری شد. این بررسی نشان داد پیامد مایه‌زنی باکتری بر همه ویژگی‌های اندازه‌گیری شده در سطح یک درصد معنی‌دار است. تمام ویژگی‌های ذکر شده در حضور باکتری بالاترین اندازه‌ها را داشتند. با توجه به مشکل کمبود روی قابل جذب در خاک‌های آهکی خوزستان و با توجه به توانایی آن در انحلال روی، فسفر، پتاسیم و تولید اکسین(خصوصیات محرک رشدی) می‌تواند به عنوان کود زیستی به کاربرده شوند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Effect of zinc solubilizing growth promoter bacterium on plant growth under laboratory conditions

نویسندگان [English]

  • banafsheh rezaee niko 1
  • Naeimeh Enayatizamir 2
  • mojtaba norozi masir 3

1 M.Sc. graduate student of Soil Science, Department of Soil Science, Shahid Chamran University of Ahvaz

2 Associate Prof., Department of Soil Science, Shahid Chamran University of Ahvaz,

3 Assistant Prof., Department of Soil Science, Shahid Chamran University of Ahvaz

چکیده [English]

Introduction

Zinc is one of the imperative micronutrients required relatively in small concentrations in tissues for healthy growth and reproduction of plants. Zinc deficiency in plants leads to reduced membrane integrity and synthesis of carbohydrates, auxins, nucleotides, cytochromes, and chlorophyll and develops susceptibility to heat stress. The solubility of Zn is highly dependent upon soil pH and moisture and hence arid and semiarid areas are often zinc-deficient. The use of microorganisms with the aim of improving nutrients availability for plants is an important practice and necessary for agriculture. Zinc-solubilizing microorganisms can solubilize zinc from inorganic and organic pools of total soil zinc and can be utilized to increase zinc availability to plants. Therefore, the present study was carried out to isolate and characterize native zinc-solubilizing bacteria from Zea mays rhizosphere and evaluate their zinc-solubilizing potential and the effect of zinc solubilizing isolate on Zea mays growth.

Materials and Methods:

In vitro zinc solubilization assay of isolates was done using 0.1% zinc from zinc oxide in both plate and broth assays. Actively growing cultures of each isolates were spot-inoculated (7 µL) onto the agar and plates were incubated at 28°C for 48 h. The clearing zone around colony was recorded. Quantitative study of zinc solubilization was studied in 150 mL conical flasks containing 50 mL of liquid mineral salt medium. The broth was inoculated with 10 µL of overnight grown bacterial inoculum and incubated for 72 h at 160 rpm in an incubator shaker at 28°C. After incubation, the culture broth was centrifuged and the concentration of Zn in the supernatant was estimated in atomic absorption spectrophotometer. Among these isolates, 18 isolates with a solubility index of 1 and higher were selected based on morphological, biochemical and physiological characteristics for further studies. An isolate with more ability to dissolve zinc, phosphorus, potassium and auxin production were selected for investigation the effect of isolate on Zea mays growth. Maize seeds of cultivable variety were surface sterilized with 1% sodium hypochlorite for 5 min and washed several times with sterile distilled water. Seeds were treated with inoculum containing 108 cfu•g−1 of isolate. A factorial experiment in a completely randomized design with five replications was conducted. The treatments included two levels of bacteria B1 (control), B2 (Stenotrophomonas) and zinc sulfate fertilizer at three levels of Zn0 (control), Zn20 (20 kg/ha) and Zn40 (40 kg/ha). After 60 days of sowing, plants were removed from the tubes carefully and biometric parameters like root length, shoot length and dry mass of plants were recorded as the indicative of plant growth.

Results and Discussion:
A total of 50 bacterial isolates were isolated from corn rhizosphere. Of all, sixteen isolates showed solubilization halo on plate agar medium. Among the cultures, Z1, Z3, Z16 and Z12 showed the highest solubilisation zone in ZnO amended medium with maximum solubility index (1.3). Quantitative assay for zinc solubilisation revealed that Z14 were able to dissolve 44.8 ppm from ZnO in liquid medium. While solubility index of this isolate was lower that above mentioned isolates (1). Of all, the isolate Z14 with highest zinc solubilisation by broth assay was characterized and identified as Stenotrophomonas
species based on Gram-negtive reaction and other biochemical and physiological properties. This isolate was able to produce auxin and dissolve insoluble phosphorus and potassium from the source tricalcium phosphate and vermiculte, respectively. One of these strains (Z14), Stenotrophomonas was used as inoculum in corn culture.
Seed bacterization of maize with zinc solubilising Stenotrophomonas enhanced the plant growth significantly after 15 days. Results indicated a significant interaction effect of bacterium and fertilizer on shoot dry weight and chlorophyll content (p < 0.01). The maximum spad index and wet weight of aerial part obtained at present of bacterium and without using of zinc sulfate. The main effect of bacterium on wet and dry weight of root and wet weight of aerial part, root length and shoot height was significant (p < 0.01). َApplication of bacterium in all treatments caused to increased all measured parameters in th eperesence of zinc fertilizer or absence of zinc fertilizer.
Conclusion: PGPR is known as a group of useful rhizospheric bacteria that increase plant growth. Today, the increasing use of PGPRs in agriculture as an alternative to chemical fertilizers to prevent environmental contamination.

کلیدواژه‌ها [English]

  • Fertilizer
  • Potassium
  • Zinc
  • phosphorus
  • Growth
  1. Abaid-Ullah, M., Hassan, M. N., Jamil, M., Brader, G., Shah, M.K.N., Sessitsch, A., and Hafeez, F. Y. 2015. Plant growth promoting rhizobacteria: An alternate way to improve yield and quality of wheat (Triticum aestivum). International Journal of Agriculture and Biology, 17: 51-60.
  2. Ashrafuzzaman, M., Hossein, F.A., Razi Ismail, M., Anamul Hoque, M.D., Zahurul Islam, M., Shahidullah, S.M., and Meon, S. 2009. Efficiency of plant growth-promoting rhizobacteria (PGPR) for the enhancement of rice growth. African Journal of Biotechnology, 8: 1247-1252.
  3. Banchio, E., Bogino, P.C., Zygadlo, J., and Giordano, W. 2008. Plant growth promoting rhizobacteria improve growth and essential oil yield in Origanum majorana L. Biochemical Systematics and Ecology, 36(10): 766-771.
  4. Bath, S.A., Thenua, O.V.S., Shivakumar, B.G., and Malik, J.K. 2005. Performance of summer green gram [Vigna radiate (L.) Wilczek] as influenced by biofertilizers and phosphorus nutrition. Haryana Journal of Agronomy, 21(2): 203-205.
  5. Bent, E., Tuzun, S., Chanway, C. P., Enebak, S.2001. Alterations in plant growth and in root hormone levels of lodgepole pines inoculated with rhizobacteria. Canadian Journal of Microbiology, 47: 793–800.
  6. Brenner, D. J., Krieg, N. R, Statey, J T. 2005. Bergie's manual systematic bacteriology. 2nd ed. New York: Springer, Part C.
  7. Bric, J.M., Bostock, R.M., Silverstone, S.E. 1991. Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. Applied and Environmental Microbiology, 57(2):535-538.
  8. Broadley, M.R., White, P.J., Zelko, I., Lux, A. 2007. Zinc in plants. Journal of New Phytologist, 173(4):677–702.
  9. Bulgarelli, D., Schlaeppi, K., Spaepen, S., van Themaat, E.V.L., and Schulze-Lefert, P. 2013. Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology, 64, 807-838.
    1. Cakmak, I. 2008. Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant and Soil, 302(1-2): 1-17.
    2. Cakmakc, R., Erat, M., Erdogan, U., and Donmez, M.F. 2007. The influence of plant growth–promoting rhizobacteria on growth and enzyme activities in wheat and spinach plants. Journal of Plant Nutrition and Soil Science, 170(2): 288-295.
    3. Carlos, M. H. J., Stefani, P. V. Y., Janette, A. M., Melani, M. S. S., and Gabriela, P. O. 2016. Assessing the effects of heavy metals in ACC deaminase and IAA production on plant growth-promoting bacteria. Microbiological research, 188: 53-61.
    4. Chen, Y.P., Rekha, P.D., Arun, A.B., and F.T., Shen. 2006. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Applied Soil Ecology, 34: 33–41.
    5. Chowdhury, S.P., Hartmann, A., Gao, X., and Borriss, R. 2015. Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42–a review. Frontiers in Microbiology, 6:1-11.
    6. Edi-Premono, M. Moawad, A. and Vleck, L.G. Effect of phosphate solubilizing Pseudomonas putida on the growth of maize and it survival in the rhizosphere, Indones. Journal of Crop Science. 11 (1996) 13–23.
    7. El-Sayed, W. S., Akhkha, A., El-Naggar, M. Y., and Elbadry, M. 2014. In vitro antagonistic activity, plant growth promoting traits and phylogenetic affiliation of rhizobacteria associated with wild plants grown in arid soil. Frontiers in Microbiology, 5.
    8. Enayatizamir, N., and Landi, A. 2017. Potassium solubilizing bacteria ability to increase wheat growth and potassium uptake under in vitro condition. Journal of Water and Soil. 31(4): 1120-1134. (in Persian).
    9. Esitken, A., Yildiz, H.E., Ercisli, S., Donmez, M.F., Turan, M., and Gunes, A. 2010. Effects of plant growth promoting bacteria (PGPB) on yield, growth and nutrient contents of organically growth strawberry. Journal of Scientia Horticulturae, 124: 62-66.
    10. Farag, M.A., Zhang, H., and Ryu, C.M. 2013. Dynamic chemical communication between plants and bacteria through airborne signals: induced resistance by bacterial volatiles. Journal of Chemical Ecology, 39(7): 1007-1018.
    11. Gandhi, A., Muralidharan, G., Sudhakar, E., and Murugan, A. 2014. Screening for elith zinc solubilization bacterial isolate from rice rhizosphere environment. International Journal of Recent Scientific Research, 5(12): 2201-2204.
    12. Glick, B.R., Liu, C., Ghosh, S., and Dumbroff, E.B. 1997. Early development of canola seedlings in the presence of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2. Soil Biology and Biochemistry, 29(8): 1233-1239.
    13. Goteti, P. K., Emmanuel, L. D. A., Desai, S. and Shaik, M. H. A., 2013. Prospective zinc solubilising bacteria for enhanced nutrient uptake and growth promotion in maize (Zea mays L.). International Journal of Microbiology, 1-7.
    14. Groudev, S.N. 1987. Use of heterotrophic microorganisms in mineral biotechnology. Acta Biotechnologica, 7: 299–306.
    15. Gupta, M., Kiran, S., Gulati, A., Singh, B., and Tewari, R. 2012. Isolation and identification of phosphate solubilizing bacteria able to enhance the growth and aloin-A biosynthesis of Aloe barbadensis Miller. Microbiological Research, 167: 358-363.
    16. Gyaneshwar, P., Naresh Kumar, G., Parekh, L.J., and Poole, P.S. 2002. Role of soil microorganisms in improving P nutrition of plants. Plant and Soil, 245: 83-93.
    17. Habibi, S., Djedidi, S., Prongjunthuek, K., Mortuza, M.F., Ohkama-Ohtsu, N., Sekimoto, H., and Yokoyoma, T. 2014. Physiological and genetic characterization of rice nitrogen fixer PGPR isolated from rhizosphere soils of different crops. Plant and Soil, 379(1-2), 51-66.
    18. Hassan, M. N., Afghan, S., and Hafeez, F. Y. 2010. Suppression of red rot caused by Colletotrichum falcatum on sugarcane plants using plant growth-promoting rhizobacteria. Biocontrol,55(4): 531-542.
    19. Hu, X., Chen, J., and Guo, J. 2006. Two phosphate-and potassium-solubilizing bacteria isolated from Tianmu Mountain, Zhejiang, China. World Journal of Microbiology and Biotechnology, 22(9): 983-990.
    20. Hussain, A., Abdel-Salam, M.S., Abo-Ghalia, H., Hagazy, W.K., and Hafez, S.S. 2017. Optimization and molecular identification of novel cellulose degrading bacteria isolated from Egyptian environment. Journal of Genetic Engineering and Biotechnology.  15(1):77-85.
    21. Islam, S., Akanda, A.M., Prova, A., Islam, M.T., and Hossain, M.M. 2016. Isolation and identification of plant growth promoting rhizobacteria from cucumber rhizosphere and their effect on plant growth promotion and disease suppression. Frontiers in Microbiology, 6:1-12.
    22. Jenschke, G., Brandes, B., Kuhn, A.J., Schoder, W.H., Becker, J.S., and Godlbdd, D.L. 2000. The mycorrhizal fungus Paxillus in volutes magnesium to Norway spruce seedlings. Evidence from stable isotope labeling. Plant and Soil, 220: 243-246.
    23. Jeon, J.S., Lee, S.S., Kim, H.Y., Ahn, T.S., and Song, H.G. 2003. Plant growth promoting in soil by some inoculated microorganism. Journal of Microbiology, 271-276.
    24. Karimi, A. H. 1996. Agronomy and forage plants. Tehran University Press. Page 414. (Translated in Persian).
    25. Kaya, C., and Higgs, D. 2002. Response of tomato (Lycopersicom esculentum L.) cultivars to foliar application of zinc when grown in sand culture at low zinc. Scientia Horticulturae, 93(1): 53-64.
    26. Kumar, P., Dubey, R.C., and Maheshwari, D.K. 2012. Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiological Research, 167: 493– 499.
    27. Kumar, P., Kaushal, N. and Dubey, R.C., 2015. Isolation and identification of Plant Growth Promoting Rhizobacteria (Pseudomonas spp.) and their effect on growth promotion of Lycopersicon esculentum L. Academia Arena, 7(5):44-51.
    28. Liu, W., Xu, X., Wu, X., Yang, Q., Luo, Y., and Christie, P. 2006. Decomposition of silicate minerals by Bacillus mucilaginosus in liquid culture. Environmental Geochemistry and Health, 28: 133-140.
    29. Lucy, M., Reed, E., and Glick, B. R. 2004. Applications of free living plant growth-promoting rhizobacteria. Antonie van leeuwenhoek, 86(1): 1-25.
    30. Malakouti, M.J. and Gheibi, M.N. 2000. Determination of critical levels of nutrients in soil, plant, and fruit for the quality and yield improvements in strategic crops of Iran. Second ed. (completely revised). High Concoil for Appropriate Use of Pesticides and Chemical Fertilizers, Ministry of Agriculture, Pp. 92. Karaj, Iran.
    31. Marius, S., Octavita, A., Eugen, U., Vlad, A. 2005. Study of a microbial inoculation on several biochemical indices in sunflower (Helianthus anuus L.). Genetics and Molecular Biology, 12(2): 11-17.
    32. Marschner, H., 1995. Mineral nutrition of higher plants. 2nd ed., Academic PreHarcourt Brace Company, Pub. Co. New York.889 p.
    33. Mehboob, I., Naveed, M. and Zahir, Z.A. 2009. Rhizobial association with non-legumes: mechanisms and applications. Critical Reviews in Plant Science, 28(6), pp.432-456.
    34. Mehta, P., Walia, A., Kulshrestha, S., Chauhan, A., and Shirkot, C.K. 2015. Efficiency of plant growth‐promoting P‐solubilizing Bacillus circulans CB7 for enhancement of tomato growth under net house conditions. Journal of Basic Microbiology, 55(1): 33-44.
    35. Messiha, N.A.S., Van Diepeningen, A.D., Farag, N.S., Abdallah, S.A., Janse, J.D., and Van Bruggen, A.H.C. 2007. Stenotrophomonas maltophilia: a new potential biocontrol agent of Ralstonia solanacearum, causal agent of potato brown rot. European Journal of Plant Pathology, 118(3): 211-225.
    36. Mohite, B. 2013. Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. Soil Science and Plant Nutrtion, 13(3): 638-649.
    37. Mumtaz, M.Z., Ahmad, M., Moazzam, J., and Tanveer, H., 2017. Zinc solubilizing Bacillus spp. Potential candidates for biofortification in maize. Journal of Microbiology Research, 202: 51-60.
    38. Naz, I., Ahmad, H., Nasreen Khohar. S., Khan, K., and Hussain Shah, A. 2016. Impact of zinc solubilizing bacteria on zinc content of wheat. American-Eurasian Journal of Agricultural and Environmental Sciences. 16 (3): 449-454.
    39. Nejad, R. K., Najafi, F., Arvin, P. and Firuzeh, R., 2014. . Study different levels of zinc sulphate (ZnSO4) on fresh and dry weight, leaf area, relative water content and total protein in bean (Phaseolus vulgaris L.) plant. Plant Bulletin of Environment, Pharmacology and Life Sciences, 3: 144-151.
    40. Pereg, L., and McMillan, M. 2015. Scoping the potential uses of beneficial microorganisms for increasing productivity in cotton cropping systems. Soil Biology and Biochemistry, 80: 349-358.
    41. Pikovskaya, R.I. 1948. Mobilization of phosphorus in soil in connection with the vital activity of some microbial species. Microbiology, 17: 362-370.
    42. Piromyou, P., Noisangiam, R., Uchiyama, H., Tittabutr, P., Boonkerd, N., and Teaumroong, N. 2013. Indigenous microbial community structure in rhizosphere of Chinese kale as affected by plant growth-promoting rhizobacteria inoculation. Pedosphere, 23(5): 577-592.
    43. Powell, S.R. 2000. The antioxidant properties of zinc. Journal of Nutrition, 130: 1447-1449.
    44. Rajkumar, M., Freitas, H. 2008. Influence of metal resistant-plant growth-promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals. Journal of Chemosphere, 71:834–842.
    45. Ramesh, A., Sharma, S.K., Sharma, M.P., Yadav, N., and Joshi, O.P. 2014. Inoculation of zinc solubilizing Bacillus aryabhattai strains forimproved growth, mobilization and biofortification of zinc in soybean and wheat cultivated in Vertisols of central India. Applied Soil Ecology, 73: 87– 96.
    46. Russo, A., Vettori, L., Felici, C., Fiaschi, G., Morini, S., and Toffanin, A. 2008. Enhanced micropropagation response and biocontrol effect of Azospirillum brasilense Sp245 on Prunus cerasifera L. clone Mr. S 2/5 plants. Journal of Biotechnology, 134(3): 312-319.
    47. Sarathambal, C., Thangaraju, M., Paulraj, C. and Gomathy, M. 2010. Assessing the Zinc solubilization ability of Gluconacetobacter diazotrophicus in maize rhizosphere using labelled 65 Zn compounds. Indian Journal of Microbiology, 50: 103-109.
    48. Saravanan, V.S., Subramoniam, S.R. and Raj, S.A. 2004. Assessing in vitro solubilization potential of different zinc solubilizing bacterial (zsb) isolates. Brazilian Journal of Microbiology, 35(1-2):121-125.
    49. Sarikhani, M.R., Malboobi, M.A. and Ebrahimi, M. 2014. Phosphate solubilizing bacteria: Isolation of Bacteria and Phosphate Solubilizing Genes, Mechanism and Genetics of Phosphate Solubilization. Agricultural Biotechnology Journal, 6(1):77-110.
    50. Shahbazi, K., and Besharati, H. 2013. Overview of agricultural soil fertility status of Iran. Land Management Journal, 1: 1-15.
    51. Shakeel, M., Rais, A., Hassan, M.N. and Hafeez, F.Y. 2015. Root associated Bacillus sp. improves growth, yield and zinc translocation for basmati rice (Oryza sativa) varieties. Frontiers in Microbiology, 6(1286): 1-12.
    52. Stein, A. J. 2010. Global impacts of human mineral malnutrition. Plant and Soil, 335:133–154.
    53. Sudha, S., and Stalin, S. 2015. Effect of zinc on yield, quality and grain zinc content of rice genotypes. International Journal of Farm Sciences, 5(3): 17-27.
    54. Vessy, K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil, 255: 571- 586.
    55. Zahid, M., Abbasi, M.K., Hameed, S., and Rahim, N. 2015. Isolation and identification of indigenous plant growth promoting rhizobacteria from Himalayan region of Kashmir and their effect on improving growth and nutrient contents of maize (Zea mays L.). Frontiers in Microbiology, 6:207.