مقایسه روش‌های پارامتریک و تحلیل سلسله مراتبی فازی به‌منظور ارزیابی تناسب اراضی منطقه دشتستان استان بوشهر برای کاشت نخل خرمای کبکاب

نوع مقاله: کاربردی

نویسندگان

1 عضو هیئت علمی گروه علوم و مهندسی خاک دانشکده کشاورزی دانشگاه شهرکرد، شهرکرد، ایران

2 عضو هیات علمی پژوهشکده خرما و میوه‌های گرمسیری

3 دانشیار گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شهرکرد

چکیده

در ارزیابی تناسب اراضی، ظرفیت تولید زمین شناسائی و متناسب با این ظرفیت، نوع کاربری مشخص می شود. این تحقیق با هدف ارزیابی کیفی تناسب اراضی منطقه دشتستان در استان بوشهر برای کاشت نخل خرمای کبکاب با استفاده از دو روش پارامتریک و تحلیل سلسله مراتبی فازی و مقایسه این دو روش، اجرا گردید. بدین منظور، 50 نخلستان‌ دارای نخل خرمای کبکاب، به عنوان نقاط مطالعاتی انتخاب شد. سپس اقدام به تهیه داده‌های صحرایی و آزمایشگاهی مربوط به این واحدهای اراضی و محاسبه شاخص‌های اراضی با استفاده از دو روش پارامتریک (فرمول ریشه دوم) و تحلیل سلسله مراتبی فازی گردید. در نهایت، کلاس‌های تناسب اراضی تعیین و دقت دو روش در تعیین این کلاس‌ها مورد مقایسه قرار گرفت. نتایج ارزیابی کیفی تناسب اراضی بر اساس روش‌ تحلیل سلسله مراتبی فازی، نشان داد که 6/96 و 4/3 درصد اراضی مورد مطالعه، به ترتیب در کلاس‌های تناسب S2 و S3 قرار می‌گیرند. این در حالی است که بر اساس روش‌ پارامتریک (فرمول ریشه دوم)، 82 و 18 درصد اراضی مورد مطالعه، به ترتیب در کلاس‌های تناسب S3 و Nواقع می‌شوند. مقایسه ضرایب همبستگی بین شاخص اراضی محاسبه شده و مقادیرعملکرد اندازه‌گیری شده، نشان داد که به دلیل وجود ضریب تبیین بالاتر، روش تحلیل سلسله مراتبی فازی (69/0R2 =) نسبت به روش پارامتریک فائو (فرمول ریشه دوم) (53/0R2 =)، از صحت و دقت بیشتری در تعیین کلاس‌های تناسب اراضی برای کاشت نخل خرمای کبکاب در منطقه مورد مطالعه، برخورداراست.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Comparison of Parametric and Fuzzy Analytical Hierarchy Process (AHP) Methods to Evaluate Land Suitability for Kabkab Date Palm (Phoenix dactylifera L. cv Kabkab) Plantation in Dashtestan Area, Bushehr Province

نویسندگان [English]

  • Javad Givi 1
  • Hojat Dialami 2
  • Mehdi Naderi Khorasgani 3
1 A member of scientific staff, Soil Science and Engineering Department, College of Agriculture, Shahrekord University, Shahrekord, Iran
2 Member of scientific staff at Date Palm and Tropical Fruits Research Center
3 Associate Prof., Department of Soil Sciences and Engineering, College of Agriculture, Shahrekord University
چکیده [English]

Background and objective: In the assessment of land suitability, the land-production capacity is identified and the type of use is determined in proportion to that capacity. In this regard, the FAO approach has been used by many scholars in different parts of the world and Iran in land suitability assessment studies. In this approach, the most commonly used method is the parametric method. The FAO approach uses Boolean logic to assess land suitability. This logic has been criticized by a number of land evaluation researchers. Because it does not take into account the continuous nature of the soil variations along the earth's surface and the uncertainty in the measurements. To overcome these shortcomings, the fuzzy analytical hierarchy process (FAHP) was presented to determine the land suitability classes. Land suitability should be determined based on a fuzzy analytical hierarchy process, in which, unlike the FAO method, unequal importance for different land characteristics and continuity of soil variations are considered. This research was carried out with the aim of qualitative land suitability evaluation in Dashtestan area, Bushehr province for Kabkab date palm (Phoenix dactylifera L. cv Kabkab) plantation, using two methods of FAO parametric (second root formula) and fuzzy analytical hierarchy process (FAHP) and comparing these two methods.
Materials and methods: The study area is located in Dashtestan region, Bushehr province, Iran; between latitudes 29º 12΄ and 29º 31΄ N and longitudes 51º 09΄ and 51º 59΄ E. Its surface area is 23000 ha. The mean annual rainfall in the area is 250 mm and its mean annual temperature is 27 °C. The soil temperature and moisture regimes are hyperthermic and ustic, respectively. The physiographic unit which is river alluvial plain is very gently sloping. 80 % of the Kabkab date palm plantation is present in the study area. In order to achieve the objectives of this research, 50 date palm groves, each with an area of at least 0.5 ha and a palm of Kababab cultivar, aged 20 to 25 years, with the same management level and having different soil, were selected as observation points. Then a soil profile was dug randomely in each date palm grove, with dimensions of 1.5 (length), 1 (width) and 1.5 (depth) meters and described, using soil profile description guide. Soils were sampled from different horizons of the profiles and the required physical and chemical analyses were carried out on the samples, according to the standard laboratory methods. The drilling site was chosen to have a date palm tree in each of the four corners of the profile. The yield of the four trees located in four corners of each profile was measured and their average yield was considered as the final yield for the corresponding profile. Meteorological data was collected for a 10 year period from the nearest synoptic station (Borazjan station, Borazjan, Bushehr). Land indices were calculated, using soil and climatic data and parametric (second root formula) and fuzzy AHP methods. Weighted average of the climatic and the soil data was used and finally a land index was calculated for each soil profile. In the fuzzy AHP method, relative weight of each of the studied criteria was determined by analytical hierarchy analysis with establishment of pair wise matrix. Degree of membership for each soil and climatic criteria was also determined through membership functions and finally, land suitability classes were determined. At the end, accuracy of the methods was also compared. Landscape characteristics such as slope, drainage and soil depth were not considered in the land evaluation, because these characteristics did not show any limitation for the date production in the study area.
Results: The results of qualitative land suitability evaluation based on fuzzy AHP method showed that 96.6 and 3.4 percent of the studied area are classified as S2 and S3, respectively. This is in the case that based on parametric (second root formula) method, 82 and 18 percent of the studied area are marginally suitable and non-suitable, respectively. According to these results, higher land suitability classes were obtained, based on fuzzy AHP than through parametric method. Correlation between the calculated land index and the measured yield, determined for the fuzzy AHP method was higher than the one obtained for the parametric method. This proves that the fuzzy AHP is a more appropriate method for land suitability assessment for Kabkab date palm plantation in the studied area than the parametric method (second root formula).
Conclusion: According to the results of this research, the fuzzy AHP is a more appropriate method for qualitative land suitability evaluation than the parametric method (second root formula) for Kabkab date palm plantation in the studied area in Bushehr province.

کلیدواژه‌ها [English]

  • Parametric
  • Fuzzy AHP
  • Kabkab date palm
  1. Amirian, A. 2011. Land suitability spatial modeling using geostatistical techniques and Fuzzy set theory. PhD thesis, Faculty of Agriculture and Natural Resources, University of Tehran, Iran (in Persian).
  2. Attua, E. M., and Fisher, J. B. 2010.  Land suitability assessment for pineapple production in the Akwapim south district, Ghana: A GIS-Multi-criteria Approach. Ghana Journal of Geography, 2: 47-83.
  3. Ayag, Z., and ozdemir, R. G. 2006. A Fuzzy AHP approach to evaluate machine tool alternatives. Journal of Intelligent Manufacturing, 17: 179-190.
  4. Ayoubi, Sh., Givi, J., Jalalian, A., and Amini, A. M. 2002. Quantitative evaluation of land suitability for important crops in Baraan area, Isfahan. Journal of Sciences and Technology of Agriculture and Natural Resources, 3: 105-119 (in Persian).
  5. Baja, S., Chapman, D. M., and Dragovich, D. 2001. A conceptual model for assessing agricultural land suitability at a catchment level using a continuous approach in GIS. Proceedings of the geospatial information and agriculture conference, Sydney NSW Agriculture, Sydney, 16-19 July, pp. 828-841.
  6. Banaei, M. H. 1998. Soil moisture and temperature regime map of Iran. Soil and Water Research Institute, Tehran (in Persian).
  7. Belal, A. A. and Al-Ashri K. M. A. 2011. GIS Based land evaluation in Baharyia oasis, western desert, Egypt. Mansoura University. Journal of Soil Science and Agricultural Engineering, 2 (1): 11 - 24
  8. Bouyoucos, G. J. 1962. Hydrometer method improved for making particle size analysis of soil. Agronomy Journal, 54: 464-465.
  9. Braimoh, A. K., and Velk, P. L. G. 2004. GIS- land evaluation for maize based on fuzzy set and interpolation. Environmental Management, 33: 226- 238.
  10. Burrough, P. A. 1989. Fuzzy mathematical methods for soil survey and land evaluation. Journal of Soil Science, 40: 477–492.
  11. Burrough, P. A., MacMillan, R. A., and Van Deursen, W. 1992. Fuzzy classification methods for determining land suitability from soil profile observations and topography. Journal of Soil Science, 43: 193- 210.
  12. Burt, R. 2014. Soil survey laboratory methods manual. United States Department of Agriculture, Natural Resources Conservation Service, USA, Lincoln, Nebraska. 1035p.
  13. Dialami, H. 2017. Qualitative, Quantitative and Economical Land Suitability Evaluation for Kabkab Date Palm Cultivation in Khuzestan, Fars and Bushehr Provinces, Using Multi- Criteria Evaluation and FAO Methods. PhD thesis, Faculty of Agriculture, University of  Shahrekord, Shahrekord, Iran (in Persian).
  14. Elaalem, M. 2013. A Comparison of Parametric and fuzzy multi-criteria Methods for evaluating land suitability for Olive in Jeffara Plain of Libya. APCBEE Procedia, 5: 405-409.
  15. FAO, 1978. Report on the agro-ecological zones project. 1: Methodology and results for Africa. World Soil Resources Repot No. 48., FAO, Rome. 158 p.
  16. Ghanavati, G., Landi, A., and Baneinaama, J. 2009. Land suitability evaluation for wheat and date palm cultivation in Shadegan area. M.Sc. thesis, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Iran (in Persian).
  17. Givi, J. 1998. Qualitative land suitability evaluation for field and horticultural crops. Technical Publication No. 1015. Soil and Water Research Institute, Ministry of Agriculture, 100 p (in Persian).
  18. Hamzeh, S., Mokarram, M., and Alavipanah, S. K. 2014. Combination of Fuzzy and AHP methods to assess land suitability for barley: Case study of semiarid lands in the southwest of Iran. Desert, 19(2): 173-181.
  19. Keshavarzi, A.,  Sarmadian, F., Heidari, A., and Omid, M.  2010. Land suitability evaluation using fuzzy continuous classification (A case study: Ziaran region). Modern Applied Science, 4: 72-81.
  20. Khalifa, M. E. A., and Samir, M. H. A. R.  2008. Land potentiality assessment, east El-Owienat area, Egypt. Alex University Journal of Agriculture and Environment Sciences, 7(1): 149-171.
  21. Knudsen, D., Peterson, G. A., and Pratt, P. F. 1982. Lithium, sodium, and potassium. In: Page A. L., Miller R. H. and Keeney D. R. (eds.). Methods of Soil Analysis. Part 2: Chemical and Microbiological Properties. American Society of Agronomy, Soil Science Society of America, Madison, WI, USA. pp 225-246.
  22. Marashi, S. S., Rahkhodaei, E., Ghasemi, R. A., Behseresht, R., and Garshasbi, M. R. 2013. Study on the adaptability and determination of quantitative and qualitative fruit characteristics of date cultivars in Tabas region. Final report, Agricultural Research, Education and Extension Organization. Ministry of Jahad-e-Keshavarzi, Iran.
  23. Metwaly, M. M. A., and El-Araby, A. M. 2011. Land suitability for some specific crops, using remote sensing and GIS in El-Qaa plain, South Sinai, Egypt. Mansoura University. Journal of Soil Science and Agricultural Engineering, 2 (2): 227 – 238.
  24. Mohammadi, J., and Givi, J. 2001. Land suitability evaluation for irrigated Wheat in Falavarjan region, Isfahan; using Fuzzy set theory. Journal of Sciences and Technology of Agriculture and Natural Resources, 5(1): 103 - 116 (in Persian).
  25. Moreno, J. F. S.  2007. Applicability of knowledge-based and fuzzy theory-oriented approaches to land suitability for upland rice and rubber, as compared to the farmer's perception. M.Sc. thesis, International Institute for Geo-Information Science and Earth Observation (ITC). Enschede. Netherlands.
  26. Mukhtar, E., Comber, A., and Fisher, P. 2010. Land evaluation techniques, comparing Fuzzy AHP with TOPSIS methods. 13th AGILE International Conference on Geographic Information Science. 10-14 May, Guimarães, Portugal.
  27. Nelson, R. E. 1982. Carbonate and gypsum. In: Page A. L., Miller R. H. and Keeney D. R. (eds.). Methods of soil analysis. part2: Chemical and Microbiological Properties. American Society of Agronomy, Soil Science Society of America, Madison, WI, USA. pp. 181-197.
  28. Peech, M. 1965. Hydrogen ion activity. In: Black, C.A. (ed.), Methods of soil analysis. Part 2: Chemical and Microbiological Properties. American Society of Agronomy, Soil Science Society of America, Madison, WI, USA.  pp. 914-926. 
  29. Roades, J. D. 1996. Salinity: electrical conductivity and total dissolved solids. In: Sparks D. L. (ed.). Methods of Soil Analysis. Part 3: Chemical and Microbiological Properties. American Society of Agronomy, Soil Science Society of America, Madison, WI, USA.  pp. 417-437.
  30. Romeijn, H., Faggian, R., Diogo, V., and Sposito, V. 2016. Evaluation of deterministic and complex Analytical Hierarchy Process methods for agricultural land suitability analysis in a changing climate. International Journal of Geo-Information, 5(99): 1-16.
  31. Salah, A., Van Ranst, E., and Hisham, El. 2001. Land suitability assessment for date palm cultivation in the eastern Nile delta, Egypt; using an automated land evaluation system (ALES) and GIS. Second International Conference on Date Palm, 25-27 March. Al-Ain, UAE.
  32. Schoeneberger, P. J., Wysocki, D. A., Benham, E. C., and Broderson, W. D. 2012. Field book for describing and sampling soils. Version 3, Natural Resources Conservation Service, National Soil Survey Center, Lincoln, NE. 300 p.
  33. Sharififar, A., Ghorbani, H., Sarmadian, F. 2016. Soil suitability evaluation for crop selection, using fuzzy sets methodology. Acta Agriculturae Slovenica, 107(1):159-174.
  34. Sulieman, M. M., Ibrahim, I.S., and Elfaki, J. 2015. Land suitability characterization for crop and fruit production in some river Nile terraces. Khartoum, North Sudan. International Journal of Scientific and Research Publications, 5(10): 1-5.
  35. Sys, C., Van Ranst, E., and Debaveye, J. 1991a. Land evaluation, Part I: Principles in land evaluation and crop production calculations. Agricultural Publication No. 7. GADC, Brussels, Belgium. 274p.
  36. Van Laarhoven, P. J. M., and Pedrcyz, W. 1983. A fuzzy extension of Saaty’s priority theory. Fuzzy Sets and Systems, 11: 229-241.
  37. Van Ranst, E., Tang, H., Groenemans, R., and Sinthurahat, S. 1996. Application of fuzzy logic to land suitability for rubber production in peninsular Thailand. Geoderma, 70: 1– 19.
  38. Vivas, O. J. M., and Martinez, L. J. 2014. Relief parameters and fuzzy logic for land evaluation of Mango crops (Mangifera indica L.) in Colombia. Agronomía Colombiana, 32(2): 246-254.
  39. Wakley, A., and Black, I. A. 1934. An examination of degtjareff method for determining soil organic matter and a proposed modification of chromic acid method in soil analysis. 1. Experimental. Soil Science, 79: 459-465.
  40.  Zadeh, L. A. 1965. Fuzzy sets. Information and Control, 8: 338-353.