پاسخ فیزیولوژیک و زراعی گندم به کاربرد ‌روی در آبیاری با آب شور

نوع مقاله: کاربردی

نویسندگان

1 دانشجوی سابق دانشگاه کشاورزی و منابع طبیعی رامین خوزستان

2 استادیار گروه زراعت و اصلاح نباتات دانشگاه کشاورزی و منابع طبیعی رامین خوزستان

3 استاد گروه زراعت و اصلاح نباتات دانشگاه کشاورزی و منابع طبیعی رامین خوزستان

4 عضو هیات علمی مرکزتحقیقات کشاورزی و منابع طبیعی برازجان

5 دانشجوی دکتری گروه زراعت و اصلاح نباتات دانشگاه کشاورزی و منابع طبیعی رامین خوزستان

چکیده

شوری از جمله عوامل محدود کننده عملکرد محصولات در سرتاسر جهان به‌شمار می رود و این مسأله به‌خصوص در مناطق خشک و نیمه‌خشک به‌عنوان یکی از اساسی‌ترین مشکلات بخش کشاورزی مطرح است. کاربرد عناصر ریزمغذی یکی از راه‌های افزایش کمیت و کیفیت عملکرد گندم در شرایط تنش شوری می‌باشد. به‏منظور مطالعه تأثیر مصرف ‏روی در بهبود غلظت روی در دانه و عملکرد گندم رقم چمران، آزمایشی در سال 93-1392 در گلخانه مرکز تحقیقات کشاورزی و منابع‏طبیعی برازجان، به‌صورت فاکتوریل در قالب طرح بلوک‌های کامل تصادفی در چهار تکرار انجام گرفت؛ فاکتور اول: چهار سطح شوری 4 (شاهد)، 8، 12 و 16دسی‌‌زیمنس‏ بر متر که در سه مرحله نموی (پنجه‌زنی(GS23)، گل‌دهی(GS55) و خمیری(GS71)) بر گیاه اعمال شد و فاکتور دوم: سطوح کاربرد ‌روی شامل 0، 10، 20 و 30 میلی‌گرم در کیلوگرم خاک بود. نتایج نشان داد که در هنگام وجود تنش شوری، کاربرد مقادیر 10، 20 و 30 میلی‌گرم در کیلوگرم روی نسبت به شاهد، تغییرات معنی‌دار مثبتی در ارتفاع، تعداد دانه در سنبله، میزان رطوبت نسبی برگ، کلروفیل a، b، کلروفیل کل، کارتنویید، عملکرد بیولوژیک، عملکرد دانه و غلظت روی در دانه ایجاد نموده است. افزایش سطح روی کاربردی در هر یک از سطوح شوری موجب افزایش عملکرد گردید و بیشترین عملکرد دانه (03/692 گرم بر مترمربع) با کاربرد 30 میلی‌گرم روی در کیلوگرم خاک و شوری آب آبیاری 4 دسی زیمنس بر متر به‌دست آمد. با افزایش مصرف کود سولفات‌ روی، غلظت روی دانه و برگ افزایش یافت. بر همین اساس کاربرد روی می‌تواند به‌عنوان یک راه‌کار فیزیولوژیکی مفید جهت افزایش تحمل در برابر تنش شوری تلقی گردد. به‌طور کلی به‌نظر می‌رسد که مصرف روی در آبیاری متناوب با آب شور از صدمه شدید شوری بر گیاه جلوگیری کرده، باعث بهبود صفات کیفی و عملکرد گندم می‌گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Physiologic and agronomic response of wheat to application of zinc in irrigation with saline water

چکیده [English]

Introduction: Shortage of non-saline and high quality irrigation water is a serious problem in agricultural farms which limits crop productions. Proper nutrient management is one of the key solutions to decreasing the adverse effects of salinity. Zinc is an essential trace element that can alleviate the negative effects of toxic ions on plant growth under the saline environments. Therefore, in this study, the effect of zinc an enhancer agent of saline irrigation water of wheat farms was investigated.
Materials and Methods: A factorial experiment was conducted based on randomized completed block design with four replications. The Experiment was under the greenhouse condition located in Borazjan Research Institute of Agriculture and Natural Resources during 2012-2013. The first factor comprised four levels of salinity including 4 (control), 8, 12 and 16 dS.m-1. The second factor was application of four levels of zinc including 0, 10, 20 and 30 mg.kg-1 soil.
Results and Discussion: Our results suggested that increase in zinc concentration could significantly alleviate negative effects of salinity stress on plant height. The highest plant height (84.13 Cm) was achieved by application of 30 mg.kg-1 soilzinc. Although increase in salinity stress reduced wheat growth potential there was no significant difference between 4 dS.m-1 (86.32 Cm) and 8 dS.m-1 (80.19 Cm) on the plant height. The lowest number of grain in spike (36.19) was observed in control treatment while the maximum number of grain in spike (53.44) was produced under 30 mg.kg-1 soil zinc. Increase of salinity from 4 to 16 dS.m-1 drastically reduced the number of grain in spike from 50 to 39.69. Application of 30 mg.kg-1 soilzinc resulted in higher RWC (85.02%) compared to control (69.30%). Increase in zinc concentrations led to a higher chlorophyll and carotenoid content. There was no significant difference between 10 and 20 mg.kg-1 soilzinc sulfate on chlorophyll content. Increasing salinity from 4 dS.m-1 to 12 dS.m-1 resulted in reduction of chlorophyll a from 2.58 to 2.08­ mg.gr-1 fw, chlorophyll b from 0.79 to 0.59 mg.gr-1 fw and total chlorophyll from 3.76 to 2.90 mg.gr-1 fw. Zinc promoted synthesis of carotenoid. Carotenoid contents reached 8.43 mg.gr-1 fw by the application of 30 mg.kg soil-1. The maximum carotenoid content (9.30 mg.gr-1 fw) was observed at 8 dS.m-1 salinity while there was no significant difference with carotenoid content of 4 dS.m-1 (8.99 mg.gr-1 fw). However, by increasing salinity stress, the carotenoid content significantly reduced and the lowest carotenoid content (6.70 mg.gr-1 fw) was observed at 16 dS.m-1 salinity. Zinc content of leaf and grain of wheat significantly increase by the application of 30 mg.kg-1 soil zinc and in the highest concentration of fertilizer, zinc content of leaf and grain reached 32.07 and 63.76 mg.kgr-1 respectively. The highest wheat biological yield (1577.50 g.m-2) was observed in 4 dS.m-1 with 30 mg Zn kg-1 soil while the lowest biological yield (986.39 g.m-2) was observed at no added fertilizer and salinity of 16 dS.m-1. The maximum wheat grain yield (692.03 g.m-2) was observed in salinity of 4 dS.m-1 with 30 mg Zn kg-1 soil while the lowest grain yield (459.39 g.m-2) was observed at no added fertilizer treatment and salinity of 16 dS.m-1. Our results clearly proved that application of zinc could alleviate negative effects of salinity stress on wheat grain yield. Wheat biological yield at salinity of 16 dS.m-1 with no added fertilizer reached 986.39 g.m-2 while at the same salinity, application of 30 mg Zn kg-1 soil zinc enhanced biological yield to 1131.80 g.m-2. Although salinity level from 4 to 16 dS.m-1 significantly reduced wheat grain yield application of 30 mg.kg-1 soil zinc increase grain yield from 459.39 g.m-2 to 506.94 g.m-2 in 16 dS.m-1 salinity.
Conclusion: Wheat yield was significantly affected by the quality of irrigation water. The higher the concentrations of salinity, the lower wheat yield will be produced. However, our results revealed that application of zinc is an effective way of reducing salinity to restrict wheat grain yield. This trace element enhances plant production of photosynthetic pigments; therefore, physiological performance of the crop was improved under saline conditions. Application of 30 mg Zn kg-1 soil was highly recommended in farms with saline irrigation water. 

کلیدواژه‌ها [English]

  • Complementary irrigation
  • Electrical conductivity
  • stress
  • Relative water content Pot
  1. Ahmadi, M., Astaraei, A., Keshavarz, P. and Nasiri Mahalati, M. 2006. Effect of irrigation water salinity and zinc application on soil properties, yield and chemical compositions of wheat. Desert, 11 (1): 129-141. (in Persian with English abstract).
  2. Allen, D. J., Nogues, S. and Baker, R. N. 1998. Ozone depletion and increased UV-B radiation: is there a real threat to photosynthesis. Journal of experimental Botany, 328: 1775-1788.
  3. Alloway, B.J. 2006. Role of zinc on plant nutrition and soil fertility. Translate by baybordi, A. parivar publication, Tabriz. 179 p. (in Persian).
  4. Arnon, A. N. 1967. Method of extraction of chlorophyll in the plants. Agronomy journal, 23:112-121.
  5. Bouis, H. and Islam, Y. 2011. Bio fortification: Leveraging agriculture to reduce hidden hunger. 19th World Congress of Soil Science, Soil Solutions for a Changing World, 35: 456-589.
  6. Bremner, J. M. 1996. Nitrogen- Total. In: Sparks, D. L., Page, A. L., Helmke, P. A., Loeppert, R. H., Soltanpour, P. N., Tabatabai, M. A., Johnston, C. T. and Sumner, M. E. (eds.). Methods of Soil Analysis. Part 3- Chemical Methods. Soil Science Society American Inc. American Society Agronomy Inc. Book Series, No. 5, Madison, WI, USA, pp. 1085-1121.
  7. Brown, P. H., Cakmak, I. and Zhang, Q. 1993. Form and function of zinc implant. Zinc in soils and plants. Kluwer Academic Publishers, Dordrecht, Netherland. 23: 93-106.
  8. Bukvic, G., Antunovic, M., Popovic, S. and Rastija, M. 2003. Effect of P and Zn fertilization on biomass yield and its uptake by maize lines (Zea mays L.). Plant Soil Environment, 49:505-510.
  9. Cakmak, I. 2009. Enrichment of fertilizers with zinc: an excellent investment for humanity and crop production in India. Journal of Trace Elements Medical Biological, 10: 10-16.
  10. El-Fouly, M. M., Mobarak, Z. M. and Salama, Z. A. 2011. Micronutrients (Fe, Mn, Zn) foliar spray for increasing salinity tolerance in wheat )Triticum aestivum L.( African Journal of Plant Science, 5: 314-322.
  11. El-Hendawy, S. E., Hu, Y., Yakout, G. M., Awad, A. M., Hafiz, S. E. and Schmidhalter, U. 2005. Evaluating salt tolerance of wheat genotypes using multiple parameters. European Journal of Agronomy, 22: 243-253.
  12. Francisco G., Jhon L., Jifon S., Micaela C., James P.S. 2002. Gas exchange, chlorophyll and nutrient contents in realation to Na and Cl accumulation in ‘sunburst’ mandarin grafted on different root stocks. Plant Science, 35:314-320.
  13. Francois, L E., Grieve, MC., Mass, VE., Scott, ML. 1994. Time of salt stress affects grown and yield components of irrigated wheat. Agronomy journal, 86:100-107.
  14. Frank, A B., Bauer, A., Black, A L. 1987. Effects of air temperature and water stress on apex development in spring wheat. Crop Science, 27:113-116.
  15. Gadallah, M. A. and Ramadan, T. 1997. Effects of zinc and salinity on growth and anatomical structure of Carthamus tinctorius L. Biology Plantarum, 39: 411–418, 1997.
  16. Gee, G. W. and Bauder, J. W. 1986. Particle-size Analysis. In: Klute, A., (eds.). Methods of Soil Analysis. Part 1- Physical and Mineralogical Methods. Soil Science Society American Inc. American Society Agronomy Inc. Book Series, No. 9, 2nd edition, Madison, WI, USA, pp. 383-411.
  17. Ghoulam, C., Foursy, A. and Fares, K. 2002. Effects of salt stress on growth, Inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environmental and Experimental Botany, 47:39-50.
  18. Gonzalez, F. G., Slafer, G. A., Miraleles, D. J. 2003. Grain and floret number in response to photoperiod during stem elongation in fully and slightly vernalized wheats. Field Crops Research, 81:17-27.
  19. Goudarzi, M. and Pakniyat, D. H. 2008. Evaluation of wheat cultivars under salinity stress based on some agronomic and physiological traits. Journal of Agriculture Society Science, 4: 35-38.
  20. Grieve, C. M., Lesch, S. M., Francois, L. E., Mass, E. V. 1992. Analysis of main spike yield components in salt stressed wheat. Crop Science, 32: 697-703.
  21. Hamdy, A., Abdel, S. and Abu- Zeid, M. 1993. Saline water management for optimum crop production. Agriculture Water Management, 24: 189-203.
  22. Hasegawa, R. H., Fonseca, H., Fancelli, A. L., da Silva, V. N., Schammass, E. A., Reis, T. A., and Correˆa, B. 2008. Influence of macro-and micro nutrient fertilization on fungal contamination and fumonisin production in corn grains. Food Control, 19: 36-43.
  23. Helmke, P. A. and Sparks, D. L. 1996. Lithium, Sodium, Potassium, Rubidium and Cesium. In: Sparks, D. L., Page, A. L., Helmke, P. A., Loeppert, R. H., Soltanpour, P. N., Tabatabai, M. A., Johnston, C. T. and Sumner, M. E. (eds.). Methods of Soil Analysis. Part 3- Chemical Methods. Soil Science Society American Inc. American Society Agronomy Inc. Book Series, No. 5, Madison, WI, USA, pp. 551-574.
  24. Hemantaranjan, A. and Gray, O. K. 1988. Iron and zinc fertilization with reference to the grain quality of Triticum aestivum. L. Journal of Plant Nutrition, 11: 1439-1452.
  25. Hu, Y. and Schmidhalter. U. 2001. Effect of salinity and macronutrient levels on micronutrient in wheat. Journal of Plant Nutrition, 24: 273-281.
  26. Jackson, M.L. 1958. Soil Chemical Analysis. Prentice-Hall. Inc. Englewood Cliffs NJ.
  27. Kafi, M., Borzouei, A., Salehi. M., Kamandi, A., Masoumi, A. and Nabati. J. 2009. Handbook of Plant and Crop Physiology. Jahad daneshgahi of Mashhad. Mashhad. 226 p. (in Persian).
  28. Khan. M.S.A., Hamid M., Karim A. M. A. 1997. Effect of sodium chloride on germination and seeding characters of different types of (Medicago sativa L.). Crop Science, 176: 163-169.
  29. Kuo, S., 1996. Phosphorus. In: Sparks, D. L., Page, A. L., Helmke, P. A., Loeppert, R. H., Soltanpour, P. N., Tabatabai, M. A., Johnston, C. T. and Sumner, M. E. (Eds.). Methods of Soil Analysis. Part 3- Chemical Methods. Soil Science Society American Inc. American Society Agronomy Inc. Book Series, No. 5, Madison, WI, USA, pp. 869-919.
  30. Lindsey, W.I. and Norvell, W.A. 1978. Development of DTPA soil test for Zn, Fe, Mn and Cu. Soil Science Society America Journal, 42:421-428.
  31. Munns, R. 2002. Comparative physiology of salt and water stress. Plant Cell Environment, 25: 659-671.
  32. Munns, R., James, R. A. and Lauchli, A. 2006. Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany, 57: 1025-1043.
  33. Nabizade Marvdasht, M. R., Kafi, M., Rashed Mohassel, M. H. 2003. Effects of salinity on growth, yield, elemental concentration and essential oil percent of cumin (cuminum cyminum). Field Crop Research, 1 (1): 53-60. (in Persian with English abstract).
  34. Naresh, R. K., Minhas, P. S., Goyal, A. K., Chauhan, C. P. S. and Gupta, R. K. 1993. Conjunctive use of saline and non-saline waters. II- Field Comparisons of cyclic uses and mixing for wheat. Agriculture Water Management, 23: 139-148.
  35. Nathan, M.V. and Sun, Y. 2006. Methods for plant analysis. University of Missouri, Columbia. pp. 8-9.
  36. Nelson, D. W. and Sommers, L. E. 1996. Total Carbon, Organic Carbon and Organic Matter. In: Sparks, D. L., Page, A. L., Helmke, P. A., Loeppert, R. H., Soltanpour, P. N., Tabatabai, M. A., Johnston, C. T. and Sumner, M. E. (Eds.). Methods of Soil Analysis. Part 3- Chemical Methods. Soil Science Society American Inc. American Society Agronomy Inc. Book Series, No. 5, Madison, WI, USA, pp. 961-1010.
  37. Nelson, R.E. 1982. Carbonate and gypsum. In: Page, A.L. (Eds.), Methods of soil Analysis. Part 2. American Society of Agronomy. Madison, Wisconsin, pp. 181-199.
  38. Orabi, S. A., Salman, S. R. and Shalaby, M. A. F. 2010. Increasing resistance to oxidative damage in cucumber (Cucumis sativus L.) plants by exogenous application of salicylic acid and paclobutrazol. World Journal of Agriculture Science, 6: 252-259.
  39. Prasad, A. S. 1984. Discovery and importance of zinc in human nutrition. Federation Proceedings, 43:2829–2834.
  40. Rhoades, J. D., 1996. Salinity: Electrical Conductivity and Total Dissolved Solids. In: Sparks, D. L., Page, A. L., Helmke, P. A., Loeppert, R. H., Soltanpour, P. N., Tabatabai, M. A., Johnston, C. T. and Sumner, M. E. (Eds.). Methods of Soil Analysis. Part 3- Chemical Methods. Soil Science Society American Inc. American Society Agronomy Inc. Book Series, No. 5, Madison, WI, USA, pp. 417-435.
  41. Richie, S. W., Nguyen, H. T. and Holiday, A. S. 1990. Leaf water content and gas exchange parameters of two wheat genotypes differing in drought resistance. Crop Science, 30: 105-111.
  42. Rodríguez, P., Torrecillas, A., Morales, M. A., Ortuño, M. F. and Sánchez-Blanco, M. J. 2005. Effects of NaCl salinity and water stress on growth and leaf water relations of Asteriscus maritimus plants. Environmental and Experimental Botany, 53 (2): 113–123.
  43. Sudhir, P. and Murthy, S. D. S. 2004. Effects of salt stress on basic processes of photosynthesis. Photosynthetica, 42: 481-486.
  44. Thomas, G. W., 1996. Soil pH and Soil Acidity. In: Sparks, D. L., Page, A. L., Helmke, P. A., Loeppert, R. H., Soltanpour, P. N., Tabatabai, M. A., Johnston, C. T. and Sumner, M. E. (Eds.). Methods of Soil Analysis. Part 3- Chemical Methods. Soil Science Society American Inc. American Society Agronomy Inc. Book Series, No. 5, Madison, WI, USA, pp. 475-490.
  45. Villegas, D., Casadesus, J., Atienza, S. G., Martos, V., Maalouf, F., Karam, F., Aranjuelo, I. and Nogues, S. 2010. Tritordeum, wheat and triticale yield components under multi local mediterranean drought conditions. Field Crops Research, 116: 68–74.
  46. Wallance, D. H., Ozbum, J. L. and Manger. H. M. 1972. Physiological genetics of crop yield. Advance in Agronomy, 24: 97-127.
  47. Zaki‚ R. N. and Radwan, T. E. 2011. Improving wheat grain yield and its quality under salinity conditions at a newly reclaimed soil by using different organic sources as soil or foliar applications. Journal of Applied Science Research, 7: 42-55.
  48. Zaree, M. A. 2006. Study of distribution model of salinity in soil under three irrigation regime at plot irrigation. M.Sc thesis of irrigation and drainage. Shahrekord University. 110 p. (in Persian with English abstract).