تأثیر اسید اگزالیک بر سینتیک رهاسازی روی در برخی خاک‌های شور اراضی پسته کاری (استان کرمان)

نوع مقاله: کاربردی

نویسندگان

1 دانشجوی کارشناسی ارشد/ دانشگاه شهید باهنر کرمان

2 دانشگاه شهید باهنر کرمان

3 عضو هیأت علمی/ دانشگاه شهید باهنر کرمان

چکیده

روی یکی از عناصر کم مصرف ضروری برای گیاه و انسان است و در بسیاری از چرخه­های فیزیولوژیکی و بیوشیمیایی موجودات زنده نقش دارد. در شرایط کمبود روی، گیاهان از طریق ترشح اسیدهای آلی در ریزوسفر سبب افزایش فراهمی روی در خاک می­شوند. به منظور بررسی سینتیک رهاسازی روی توسط اسیداگزالیک، 5/1 گرم از نمونه­های خاک سطحی (30-0 سانتی­متر) در دو تکرار به لوله­های پلی­اتیلنی حاوی 15 میلی­لیتر اسید اگزالیک (نسبت 10:1 خاک به محلول) در دو سطح 100 و 200 میلی­گرم در لیتر اضافه و سوسپانسیون­ها در بازه زمانی 1 تا 72 ساعت تکان داده شدند. در زمان­های مشخص شده غلظت روی در عصاره با استفاده از دستگاه جذب اتمی اندازه­گیری شد؛ سپس معادلات مختلف سینتیکی بر داده­های حاصل از آزمایش برازش داده گردیدند. با توجه به نتایج، الگوی رهاسازی روی در خاک نشان داد که رهاسازی روی در ابتدا با سرعت زیاد انجام گرفته و با گذشت زمان به تدریج به یک تعادل نسبی رسیده است. افزایش سطح اسید اگزالیک در تمامی زمان­ها سبب کاهش رهاسازی روی در خاک­های مورد مطالعه شد. بر اساس ضریب تبیین و خطای استاندارد معادلات برازش یافته، معادلات ایلوویچ، تابع توانی و پخشیدگی پارابولیک و در انتها معادله مرتبه صفر به ترتیب به عنوان بهترین معادلات در توصیف داده­ها شناخته شدند. نتایج نشان می­دهد که کاربرد اسید اگزالیک در سطح 100 میلی گرم در لیتر می­تواند سبب افزایش رهاسازی روی و افزایش قابلیت دسترسی آن در خاک شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effects of oxalic acid on zinc release kinetic from some saline soils of pistachio growing area (Kerman province)

نویسنده [English]

  • Majid Hejazi 2
2 Shahid Bahonar University of Kerman
چکیده [English]

Zinc (Zn), an essential micronutrient for both plants and humans, is involved in a number of physiological and biochemical processes. Calcareous soils cover more than 30% of the earth’s land and are characterized by the high pH and low availability of plant nutrients. Zinc (Zn) that is freely available in acid soils is only sparingly available in calcareous soils, due to their poor solubility at high pH. Zinc deficiency in most of the world’s soils has resulted in significant loss of agricultural yields. Information about Zn availability in soils is very important in the view point of Zn nutritional status of plant and human. Several soil physicochemical properties including organic matter, CaCO3, pH, moisture and total Zn concentration affect soil Zn availability to plants. Under Zn deficiency, plants tend to release organic acid in the rhizosphere which in turn increases soil Zn availability. Oxalic acid is the simplest dicarboxylic acid with two pKa values, 1.23 and 4.19 and it occurs in sediments, forest soils, and agricultural soils, especially in the rhizosphere. Oxalic acid is able to chelate with the poorly soluble nutrients in the soil and consequently influence their bioavailability. It is known that Zn availability is controlled by adsorption, release, precipitation and dissolution reactions. Study of kinetic models is a useful method to describe the changes in the nutrient availability with time. A knowledge of desorption kinetics may provide important information concerning the nature of reaction and the rate of Zn supply to plants via soil solution.
Materials and methods Composite samples of the two soils were collected from 0-30 cm depth of agricultural areas in Kerman province, Eastern Iran. The samples were air dried, crushed and passed through a 2mm sieve. Some soil chemical and physical properties of soil sample including Particle size distribution, Electrical conductivity and pH, Organic carbon, carbonate calcium equivalent, cation exchange capacity, available Zn and Total content of Zn were done according to standard procedures. For the kinetic study, soil samples were weighed (1.5g), placed in a 20 mL centrifuge tube and then 15 mL of oxalic acid with two concentrations of 1.1 and 2.2 mµ L-1 was added. The tubes were shaken from 1 to 72h at 25±2°C. Two drops of toluene were added to each tube to inhibit microbial activity. After shaking, the solutions were centrifuged and filtered through Whatman filter paper No. 42. Zinc concentration was determined in the filtrate using a Vario atomic absorption spectrometer. Several kinetic equations including zero-, first-, second- and third order, parabolic diffusion, Power function and simple elovich were also fitted to experimental data.
Results and discussion Zn release by oxalic acid increased with time and the amount of Zn release differed between soils. The difference in the amount of Zn release may be attributed to differences in (i) the total amount of labile Zn which sorbed in the soil; (ii) types, quantities and relative proportions of the soil components by which the Zn is retained and (iii) other soil properties such pH and CEC. The release pattern of Zn included an initial fast reaction followed by a slow reaction that continued up to 72 h. The two phases of Zn release can be due to the heterogeneity of adsorption site with different adsorption affinities. The release kinetic of Zn in soils was poorly described by first- and second-order equations while Time dependent Zn release was best modeled by the simple Elovich, power function and parabolic diffusion equations. Based on the relatively higher values of r2 and the lower values of S.E., the simple Elovich showed the best fitness on the cumulative release of Zn. At each specified time, the lower dose of oxalic acid released Zn from soil more than the higher dose. Organic acids may increase the sorption of metal ions on soil particles through electrostatic interactions, ternary metal–ligand–surface complex formation or surface precipitation. It seems that Zn may interact with oxalic acid where adsorbed to solid phases and resulted in decreased Zn release. The rate parameters derived from the best-fitted model were used to compare Zn release by different concentrations of oxalic acid. The results showed that the rate parameters “ab”, Kp and β decreased with the oxalic acid concentration. 
Conclusion From the present study, oxalic acid, especially at the lower rate, can increase Zn release and its bioavailability in calcareous soils. 

کلیدواژه‌ها [English]

  • Organic acids
  • Desorption
  • Calcareous soils
  • Zn availability
منابع
  1. Allison, L.E., and Moodie, C.D. 1965. Carbonate methods of soil analysis In: Black CA (ed) Part2. ASA, SSSA, Madison. WI. Pp: 1379-1396.
  2. Alloway, B.J. 2009. Soil factors associated with zinc deficiency in crops and humans. Environmental Geochemistry and Health, 31: 537–548
  3. Baranimotlagh, M., and Gholami, M. 2013. Time-dependent zinc desorption in some calcareous soils of Iran. Pedosphere, 23: 185–193.
  4. Barrow, N.J. 1985. Reactions of anions and cations with variable charge soils. Advances Agronomy, 38: 183–230.
  5. Chapman, H.D. 1965. Cation exchange capacity. In: Black CA (ed), Methods of soil analysis. Part 2. ASA, SSSA. Madison. WI. Pp: 891-901
  6. Chien, S.H., and Clyton, W.R. 1980. Application of Elovich equation to the kinetics of phosphate release and sorption in soils. Soil Science Society of America Journal, 44: 265-268.
  7. Dalal, R.C. 1985. Comparative prediction of yield response and phosphate uptake from soil using cation- anion exchange resins. Soil Science, 139: 227-231.
  8. Dang, Y.P., Dalal, R.C., Edwards, D.G., and Tiller, K.G. 1994. Kinetics of zinc desorption from vertisols. Soil Science Society of America Journal, 58: 1392–1399.
  9. Fox, T.R. and Comerford, N.B. 1990. Low-molecular-weight organic acids in selected forest soils of the southeastern USA. Soil Science Society of America Journal, 54: 1139–1144.
    1. Garcia-Rodja, I., and F. Gil-stores. 1997. Prediction of parameters describing phosphorus desorption kinetics in soils of Galicia (Northwest Spain). Journal of Environmental Quality, 26: 1363-1369.
    2. Gardiner, W.C. 1969. Rates and mechanisms of chemical reaction. Benjamin. New York.
    3. Gasser, U. G., R. A. Dahlgren, C. Ludwig, and A. E. Lauchli. 1995. Release kinetics of surface- associated Mn and Ni in serpentinitic soils: pH effects. Soil Science, 160: 273- 280.
    4. Gee, G.W. 2002. Particle size analysis. In: Jacobe HD and Clarke GT(ed),Metohds  of  Soil Analysis. Part 4. Physical Methods. SSSA. Madison. WI. Pp: 201-214.
  10. Ghasemi- Fasaei R., Maftoun. M., Olama V., Molazem B., and Tavajjoh M. 2009. Manganese release characteristics of highly calcareous soils. Communications in Soil Science and Plant Analysis, 40: 1171-1182.
  11. Ghasemi-Fasaei, R., NajafiGhiri, M., and Farrokhnejad, E. 2012. Investigation of zinc relaese patterns in different soil orders using mathematical models. African Journal of Agricultural Research, 7: 6573-6578.
  12. Ghasemi-Fasaei, R., Ronaghi, A. and Farrokhnejad, E. 2012. Comparative study of metal micronutrient release from two calcareous soils. Archives of Agronomy and Soil Science, 58: 1171-1178.
  13. Graham, RD. and Rengel, Z. 1996. Genotypic variation in Zn uptake and utilization by plants. In Robson, D. (ed.) Zinc in Soils and Plants. Kluwer Academic Publishers, Dordrecht. Pp: 107–114.
  14. Güngör, B., and M. Bekbölet. 2010. Zinc release by humic and fulvic acid as influenced by pH, complexation and DOC sorption. Geoderma, 159: 131-138.
  15. Havlin, J.L., Westfall, D.G. and Olsen S.R. 1985. Mathematical models for potassium release kinetics in calcareous soils. Soil Science Society of America Journal, 49: 371-376
  16. Jalali, M. 2005. Release kinetics of nonexchangeable potassium in calcareous soils. Communications in Soil Sciencce and Plant Analysis, 36: 1903- 1917.
  17. Khater, A.H., and Zaghloul, A.M. 2002. Copper and zinc desorption kinetics from soil: Effect of pH. Paper presented at the 17th World Conference on Soil Science, Thailand, Symposium No. 47, Paper: 1-9.
  18. Kodama, H., Soonitzer, M. and Jaakkimainen, M. 1983. Chlorite and biotite weathering by fulvic acid solutions in closed and open system. Canadian Journal of Soil Science, 63: 619–629.
  19. Lindsay, WL, and W.A. Norvell. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42:421- 428.
  20. Malakouti, M.J. and Homaee, M. 2004. Soil fertility of arid and semi-arid regions. Tarbiat Modarres univ. Press, 482p. (In Persion)
  21. Maqsood, M., Hussain, S., Aziz, T. and Ashra, M. 2011. Wheat-exuded organic acids influence Zinc release from calcareous soils. Pedosphere, 21: 657–665.
  22. Marschner, H. 1995. Mineral nutrition of higher plants. 2nd ed. Academic Press, London.
  23. Nigam, R., Srivastava, S., Prakash, S. and Srivastava, M. 2000. Effect of organic acids on the availability of cadmium in wheat. Chemical Speciation and Bioavailability, 12: 125–132.
  24. Nowack, B., Schulin, R. and Robinson, B.H. 2006. A critical assessment of  chelant- enhanced metal phytoextraction. Environmental Science Technology, 40:5225-5232.
  25. Onken, A.B. and Matheson, R.L. 1982. Dissolution rate of EDTA-extractable phosphate from soils. Soil Science Society of America Journal, 48:276-279
  26. Page, A. L., R. H. Miller. And D. R. Keeney, 1982. Methods of soil analysis, Second edition. Part 2, Chemical and Biological properties. American Soc. of Agronomy (Publ.), Madison, Wisconsin, USA.
  27. Polyzopoulos, N.A., Keramidas,  V.Z.  and Pavlatou,  A. 1986. On the limitation of the  simplified Elovich equation in describing the kinetics of phosphate sorption and release from soils. Soil Science, 37: 81-87.
  28. Rahmatullah, M. and Sheikh, B.Z. 1988. Distribution and availability of zinc in soil fractions to wheat on some alkaline calcareous soils. Soil Science Plant Nutrition, 151: 385–389.
  29. Reyhanitabar, A. and Gilkes, R.J. 2010. Kinetics of DTPA extraction of zinc from calcareous soils. Geoderma. 154: 289–293. Schwab, A.P., He. Y, and M. K. B. anks. 2004. The influence of citrate on adsorption of zinc in soils. Journal of Environmental Engineering, 130: 1180–1187.
  30. Schwab, A.P., He. Y, and M. K. B. anks. 2004. The influence of citrate on adsorption of zinc in soils. Journal of Environmental Engineering, 130: 1180–1187.
  31. Shahbazi, K. and Besharati, H. 2013. Review of Iran agricultural soils fertility status. Scientific- Promotion Journal Land Management,1:1.1-15. (In Persion)
  32. Sparks, D.L. 1986. Kinetics of reactions in pure and mixed systems. In: Sparks, D.L. (Ed.), Soil Physical Chemistry. CRC Press. Boca Raton. FL. Pp: 83–145.
  33. Toor, G. S. and G. S. Bahl. 1999. Kinetics of phosphate desorption from different soils as influenced by application of poultry manure and fertilizer phosphorus and its uptake by soybean. Bioresource Technology, 69: 117-121.
  34. Uygur, V. and Rimmer, D.L. 2000. Reaction of zinc with iron coated calcite surface at alkaline pH. European Journal of Soil Science, 51: 511–516.
  35. Violante, V., Pan Ming, H., and Geoffrey. M. 2007.  Gadd-Biophysico-Chemical Processes of Heavy Metals and Metalloids in Soil Environments (Wiley Series Sponsored by IUPAC in Biophysico-Chemical Processes, 658p.
  36. Walkley, A. and Black, I.A. 1934. An examination of Degtjareff method for determining soil organic matter, and proposed modification of the chromic acid tritation method. Soil Science, 37:29-38.
  37. Ward, M.L., Bitton, G., and Townsend T. 2005. Heavy metal binding capacity (HMBC) of municipal solid waste landfill leachates. Chemosphere, 60: 206–215.