نوع مقاله : کاربردی

نویسندگان

1 دانشجوی دکتری بیولوژی و بیوتکنولوژی خاک دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

2 دانشیارگروه علوم خاک دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

3 استاد گروه علوم خاک دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

4 استادیار گروه علوم خاک دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

چکیده

هوادیدگی زیستی کانی‌های سیلیکاتی منبع عمده پتاسیم برای گیاهان در شرایط طبیعی می‌باشد. هدف از این مطالعه، جداسازی و شناسایی باکتری‌های حل‌کننده پتاسیم از سنگ شیل­گلاکونیت­دار در استان گلستان و تعیین برخی خصوصیات محرک رشدی آنها بود. تعداد پنج نمونه یک کیلوگرمی از خاک ریزوسفر گندم از عمق صفر تا 30 سانتی‌متری و پنج نمونه یک کیلوگرمی از سنگ شیل گلاکونیت‌دار جمع‌آوری و به آزمایشگاه انتقال داده شد. پس از جداسازی و خالص­سازی جدایه­ها، سنجش میزان آزادسازی پتاسیم در محیط کشت الکساندروف حاوی مسکویت و گلاکونیت به روش نورسنجی شعله­ای انجام شد. شناسایی جدایه­ها براساس ویژگی­های بیوشیمیایی آنها انجام گردید. آزمون‌های محرک رشدی در جدایه­هایی که از لحاظ ظاهری متفاوت بوده و ازتوانمندی بالایی در آزادسازی پتاسیم برخوردار بودند صورت پذیرفت. در نهایت بهترین جدایه با استفاده از توالی نوکلئوتیدی ژن 16S rRNA شناسایی شد. از تعداد 40 جدایه اولیه، 20 جدایه از خاک ریزوسفری و 20 جدایه از خاک حاصل از پودر سنگ شیل گلاکونیت‌دار جداسازی شدند. آزادسازی پتاسیم توسط 10 جدایه برتر نشان داد که بیشترین مقدار پتاسیم آزاد شده مربوط به جدایه‌ 39 به میزان 2/34 میلی‌گرم بر لیتراز مسکویت و 8/31 میلی‌گرم بر لیتر از گلاکونیت بود. بیشترین مقدار سیدروفور، اکسین و انحلال فسفر نامحلول توسط جدایه شماره 39 مشاهده گردید. نتایج توالی نوکلئوتیدی ژن16S rRNA نشان داد که جدایه 39 متعلق به گونه آرتروباکتر فنانترنیوورانس بود. این مطالعه نشان داد باکتری­های بومی از توانایی خوبی در آزاد کردن پتاسیم از منبع شیل گلاکونیتی برخوردارند. 

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Isolation and identification of potassium solubilizing bacteria of the shale stones containing glauconite in Golestan Province and determination of growth promoting properties

نویسندگان [English]

  • S. A. Hosseini 1
  • mhsen olamaee 2
  • S. A. Movahedi Naeini 2
  • F. Khormali 3
  • R. Ghorbani Nasrabadi 4

1 Ph.D Student of Biology and Biotechnology of Soil, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

2 Associate Professor, Department of Soil Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

3 Professor, Department of Soil Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

4 Assistant Professor, Department of Soil Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

چکیده [English]

Introduction Potassium is one of the essential and macro elements in the growth of plant cells. This element plays an important role in improving the quality of agricultural products. The amounts of available potassium levels in most soils decrease more quickly and potassium balance is disturbed in many fields. Cultivation and lack of the application of potassium fertilizers in agricultural soils of Iran have caused the depletion of potassium and the amount of available potassium in most soils has reached below the critical level. The compensation of depleted potassium in the soil through indigenous resources and use of potassium bio-fertilizers is therefore very important. Weathering of silicate minerals by bacteria is considered as one of the essential K source for plant growth and development. The objective of this study was to isolate and identify potassium solubilizing bacteria from the shale containing glauconite mineral in Golestan Province and determine some traits related to plant growth promotion and selecting a superior strain in order to incubate in wheat lands.
Materials and Methods Accordingly, a total of 5 samples 1 kg of rhizosphere of wheat from a depth of 0 to 30 cm and 5 samples 1 kg from shale stone (containing glauconite) were collected from Aitamir formation in Golestan Province in May 2015 and were transferred to the laboratory of Gorgan University of Agricultural Science and Natural Resources. Isolates were transferred to Aleksandrov media containing glauconite and muscovite and incubated for 10 days and the isolated strains were stored in the refrigerator at 4 oC. The amount of potassium release in solutions after 10 days was measured. Some biochemical and morphological properties of isolates were determined based on standard methods. PGPR tests were done in the isolates which were morphologically different and had high potential in releasing K. Finally, a strain whith high ability in releasing potassium and growth promoting properties was identified using nucleotide sequence of 16S rRNA gene.
Results and Discussion Results showed that 40 strains from the first stage, 20 strains from rhizospherial soil and 20 strains from the soil resulting from glauconite mineral powders were isolated. Biochemical and potassium release tests showed that the highest released potassium was related to isolate No. 39 with an amount of 34.2 mg l-1 in muscovite, and 31.8 mg. l-1 in glauconite. The amount of siderophore produced in the superior strains showed that the lowest and the highest ratios of the diameter of the colony, were 1.12 and 3.1 related to isolate No. 19 and No. 39, respectively. The highest and the lowest auxins produced were also related to the isolate No. 39 and No. 27 with the amount of 52.25 and 5.15 mg per liter, respectively, measured at 72 and 96 hours. The results showed that the soluble phosphorus between different isolates was significantly different (P <0.05), its greatest concentration at 72 hours was related to isolates No. 39 with an amount of 295 mg per liter and the lowest at 24 hours was related to isolate No. 31 with an amount of 80 mg per liter. Also, the production of hydrogen cyanide test showed that none of the isolates was capable of producing siderophore. The obtained results from nucleotide sequence of 16S rRNA gene showed that the selected strain belonged to Arthrobacter phenanthrenivoran species.
Conclusion It can be concluded that silicate bacteria contribute to the dynamics and mineralizing of elements in the soil and eventually K release from glauconite containing shale minerals mainly by reducing rhizosphere pH, the secretion of organic anions and complex formation with the surface cations of mineral and secreted extracellular Polysaccharides and soluble compounds and decomposition of soil organic matter. Among 40 isolated strains and the various tests and the results of released potassium in both minerals, the results showed that the potential of potassium releasing was different between the tested strains. Moreover, this study showed that in addition to the effect of these strains on potassium releasing, siderophore production, auxin and inorganic phosphate solubility, they can be effective in plant growth and in land inoculation. This study revealed the potential of indigenous bacteria species in the release of K from shale containing glauconite. It is anticipated that shale containing glauconite can provide a part of the need of the crops for potassium.

کلیدواژه‌ها [English]

  • Silicate minerals
  • Glauconite
  • Biological weathering
  • Arthrobacter
  1. Alexander, D. B., and Zumber, D. A. 1993. Responses by iron-efficient and inefficient oat cultivars to inoculation with siderophore–producing bacteria in a calcareous soil. Journal of International Society of Soil Science, 16: 118-124.
  2. Aqaz Nashtifani, P., Olamaee, M., Ghorbani Nasr Abadi, R., and Barani Motlagh, M. 2014. Isolation and identification of Psedomonas fluorescence from rhizospher of tomato and evaluation of bacteria on growth of tomato. MSc Thesis, Gorgan University of Agricultural Sceince and Natural Resource. (in Persian).
  3. Arabameri, E., Olamaee, M., Ghorbani Nasr Abadi, R., and Movahedi Naeini, S. A. 2015. Isolation and identification of silicate solubilizing bacteria and investigation of some of their growth promoting factors. 14th Soil Congress of Iran- Biology and Biotechnology of Soil. (in Persian).
  4. Archana, D. S., Nandish, M. S., Savalagi, V. P., and Alagawadi, A. R. 2013. Characterization of potassium solubilizing bacteria (KSB) from rhizosphere soil. Bioinfolet - A Quarterly Journal of Life Sciences, 10: 248-257.
  5. Archana, D. S., Nandish, M. S., Savalagi, V. P., and Alagawadi, A. R. 2012. Screening of potassium solubilizing bacteria (KSB) for plant growth promotional activity. Bioinfolet - A Quarterly Journal of Life Sciences, 9(4): 627-630.
  6. Badr, M. A., Shafei, A. M., and Sharaf, SH. 2006. The dissolution of K and phosphorus bearing minerals by silicate dissolving bacteria and their effect on sorghum growth. Research Journal of Biological Sciences, 2(1): 5-11.
  7. Bahadur, I., Meena, V. S., and Kumar, S. 2014. Importance and application of potassic biofertilizer in Indian Agriculture. International Research Journal of Biological Sciences, 12(3): 80-85.
  8. Deshwal, V. K., and Kumar, P. 2013. Production of plant growth promoting substance by Pseudomonas. Journal of Academia and Industrial Research, 4: 2278-5213.
  9. Dorj Dar, J., Yazdansetad, S., Arzanesh, M. H., and Ajoodanifar, H. 2014. Screening of indigenous potassium-solubilizing bacterial strains and evaluation of their ability in solubilisation of absorbable potassium. Journal of microbial world, 7: 252-264. (in Persian with English abstract).
  10. Eliya, M., Nisa Rachmania, M., and Aris, T. 2015. Selection and identification of phosphate-potassium solubilizing bacteria from the area around the Limestone Mining In Cirebon Quarry. Research Journal of Microbiology, 10: 270-279.
  11. Fang, S. X., and Yan, L. H. 2006. Solubilization of potassium bearing minerals by wild type strain of Bacillus edaphicus and its mutants and increased potassium by wheat. Canadian Journal of Microbiology, 52(1): 66-72.
  12. Franzosi, C., Castro, L. N., and Celeda, A. M. 2014. Technical evaluation of glauconies as alternative potassium fertilizer from the Salamanca Formation, patagonia, Southwest Argentina. Natural Resources Research, 23(3): 311-320.
  13. Han, H. S., and Lee, K. D. 2006. Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. Plant Soil and Environment, 52)3): 130–136.
  14. Hu, X., Chen, J., and Guo, J. 2006. Two phosphate and potassium-solubilizing bacteria isolated from Tianmu Mountain, Zhejiang, China. World Journal of Microbial Biotechnology, 22: 983-990.
  15. Liu, D., Lian, B., and Dong, H. 2012. Isolation of Paenibacillus sp. and assessment of its potential for enhancing mineral weathering. Geomicrobiology Journal, 29)5): 413-421.
  16. Maurya, B. R., Meena, V. S., and Meena, O. P. (2014). Influence of inceptisol and alfisol’s potassium solubilizing bacteria (KSB) isolates on release of K from waste mica. International Journal of Plant Research, 27)1): 181-187.
  17. Nguyen., T. D., and Cao, N. D. 2014. Isolation, characterization and identification of phosphateand potassium- solubilizing bacteria from weathered materials of granite rock mountain, That Son, in Giang province, Vietnam. American Journal of Life Sciences, 5(2): 282-291.
  18. Norkina, S. P., and Pumpyansakya, L. V. 1956. Certain properties of silicate bacteria dokl. Japanese Journal of Crop Science, 28(1): 35-40.
  19. Osman, A. G. 2009. Study of some characteristics of silicate bacteria. Journal of Science and Technology, 10 (3): 27-35.
  20. Parmar, P., and Sindhu, S. S. 2013. Potassium Solubilization by rhizosphere bacteria: Influence of Nutritional and Environmental Conditions. Journal of Microbiology Research, 3)1): 25-31.
  21. Pessoa, R. S., Silva, C. A., Moretti, B. S., Neto, A. E. F., Inda, A. V., and Curi, N. 2015. Solubilization of potassium from alternative rocks by humic and citric acids and coffee husk. Ciência e Agrotecnologia Journal, 39(6): 553-564.
  22. Prajapati, K. B., and Modi, H. A. 2012. Isolation and characterization of potassium solubilizing bacteria from ceramic industry soil. CIBTech Journal of Microbiology, 1 (2-3): 8-14.
  23. Rahimzadeh, N., Khormali, F., Olamaee, M., and Amini, A. 2014. Changes of mineralogy of glouaconite affected by inoculation of silicate solubilizing bacteria from rhizosphere of Canola. Journal of Soil Biology, 2: 32-41. (in Persian with English abstract).
  24. Rahimzadeh, N., Khormali, F., Olamaee, M., and Dordipour, E. 2012. Releasing of potassium from Muscuvite through silicate solubilizing bacteria in vitro conditions. National Conference of Soil, Sustainable Agriculture. (in Persian with English abstract).
  25. Rasouli Sadighani, H. 2005. Study of the role of phytosydrophores and Psudomonases producing sidrophores in supplying Fe and Zn nedded by wheat cultivars. Ph.D thesis of Soil science, Tarbiat Moddares University. (in Persian with English abstract).
  26. Rodriguez, H., Gonzalez, T., Goire, I., and Bashan, Y. 2004. Gluconic acid production and phosphate solubilization by the plant growth-promoting bacterium Azospirillum spp. Naturwissenschaften, 91: 552-555.
  27. Rubio, M. G. T., Plata, S. A., Castillo, J. B., and Nieto, P. M. 2000. Isolation of Enterobacteria, Azotobacter sp. and Pseudomonas sp., producers of Indole-3-Acetic Acid and siderophores from Colombian Rice Rhizosphere. Revista Latinoamrican De Microbioloia, 5: 171-176.
  28. Skiba, M., Maj-Szeliga, K., Szymański, W., and Błachowski, A. 2014. Weathering of glauconite in soils of temperate climate as exemplified by a Luvisol profile from Góra Puławska, Poland. Geoderma, 14: 212-226.
  29. Wang, R. R., Wang, Q., Lin, Y. H. Gang, Q., and Sheng, X. F. 2015. Isolation and the interaction between a mineral-weathering Rhizobium tropici Q34 and silicate minerals. World Journal of Microbiology and Biotechnology, 31: 747–753.
  30. Zhang, C., and Kong, F. 2014. Isolation and identification of potassium-solubilizing bacteria from Tobacco rhizospheric soil and their effect on tobacco plants. Applied Soil Ecology, 82: 18–25.