نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد گروه علوم خاک دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

2 استاد گروه علوم خاک دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

3 دانشیار گروه علوم خاک دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

4 کارشناس گروه علوم خاک دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

چکیده

آنالیز تصویرروشی پیشرفته برای کمّی کردن خصوصیات خاک و افزایش دقت و صحت نتایج مطالعات میکرومورفولوژیکی است. در این پژوهش به منظور بررسی تأثیر نوع کاربری اراضی بر تخلخل و ریزساختمان افق­ سطحی خاک­ها، تعداد 9 خاک­رخ در کاربری­های متفاوت جنگل­ طبیعی و مصنوعی، اراضی رها شده، باغ و زراعی حفر و تشریح گردید. سپس از هر افق یک نمونه جهت انجام تجزیه­های فیزیکو­شیمیایی و یک نمونه دست‌نخورده جهت مطالعات میکرومورفولوژی برداشته شد. پارامترهای فیزیکو­شیمیایی مانند pH، بافت و کربن آلی اندازه‌گیری شد. پس از آماده­سازی مقاطع نازک خاک، مطالعات میکرومورفولوژی با میکروسکوپ پلاریزان و عکس‌برداری از آن­ها صورت پذیرفت. درصد تخلخل کل خاک، قطر معادل و مساحت حفرات با استفاده از نرم­افزار Image Tool محاسبه شد و داده­های به دست آمده مورد تجزیه آماری قرار گرفت. مشاهدات میکروسکوپی نشان داد در کاربری‌های جنگل طبیعی و مصنوعی، ریزساختمان غالب خاک از نوع دانه­ای و مکعبی نسبتاً زاویه­داراست ولی در کاربری زراعی عمدتاً از نوع توده­ای و مکعبی زاویه­دار می­باشد. درصد حفرات کانال در کاربری‌های جنگل طبیعی و مصنوعی بیشتر از سایر کاربری­هاست. اکثر حفرات در کاربری زراعی به دلیل جنگل‌تراشی و تخریب ساختمان خاک، از نوع  واگ و صفحه­ای می‌باشند. نتایج آنالیز تصویر نشان داد، با تغییر کاربری از جنگل به زراعی، درصد حفرات با قطر و مساحت زیاد، به­طور معنی­داری کاهش پیدا کرده است. کاربری­های باغ و جنگل طبیعی به­ترتیب با 97/46 و 80/46 درصد، بیشترین تخلخل و کاربری­های زراعی و رها ­شده به­ترتیب با 79/30 و 50/33 درصد،کمترین تخلخل را دارند. 

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Micromorphological study of soil porosity and microstructure affected by land use in loess soils of Golestan Province using image analysis

نویسندگان [English]

  • Maryam Mohammadzadeh Mohammadabad 1
  • F. Khormali 2
  • Farshad Kiani 3
  • mohammad ajami 4

1 M.Sc. Student, Department of Soil Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.

2 Professor, Department of Soil Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.

3 Associate Professor, Department of Soil Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.

4 PhD, Department of Soil Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.

چکیده [English]

Introduction Soil degradation is a widespread environmental problem that occurs as a result of land use change and destruction of vegetation cover that may lead to changes in soil structure and porosity. Land use change and land management have significant effects on physical and chemical properties and biological capabilities of soil. The investigating of undisturbed and natural soil structure using microscopic and ultramicroscopic techniques provides invaluable information about the physicochemical, mineralogical, morphological properties and soil genesis and calcification. Image analysis is an advanced method for quantifying soil properties and increasing the precision of morphological and micromorphological studies.
Materials and Methods In this study, in order to investigate the impact of different land uses on porous and microstructure of surface soil horizons, 9 profiles in different land uses, including natural forests, artificial forest, ‌abandoned land, orchard and cropland were extracted and described. Then one sample was taken from each horizon for physical and chemical analysis as well as a few undisturbed samples for micromorphological studies. Physical and chemical parameters such as texture, bulk density (BD), calcium carbonate equivalent (CCE), organic carbon (OC) and mean weight diameter (MWD) were measured. After preparation of thin sections of soil, micromorphological studies were conducted by polarizing microscope. Then from each thin section, 20 photos were taken randomly in plane polarized light (PPL) and cross polarized light (XPL) and transferred to image tool software. The percentage of total porosity of soil, feret diameter and area pores parameters were studied quantitatively. Three classes of feret diameter in micrometer and five classes of area in square micrometers were considered for pores in the soil thin sections. After importing photos to the software and performing calibration, grayscale and subtracting two images, the range of pores was identified by the software. Then in the classification section of software, the highest level of classes in each part was determined and the percentage of pores in each class was calculated and data obtained were analyzed by SPSS 16.0 software.
Results and Discussion Micromorphological observations showed that in natural and artificial forests, a significant amount of organic matter in the soil has resulted in the formation of granular and subangular blocky dominant microstructure. While in cropland land use the type of microstructure is mainly massive and angular blocky, due to deforestation and agricultural practices, which resulted in the degradation of soil microstructure. Appropriate environmental conditions and dense vegetation in natural and artificial forests land use  lead to significant biological features in comparison to other land uses that were subjected to deforestation. In natural and artificial forests land uses, the percentage of channel and large vughs pores is more than other land uses mentioned above. Tillage results in degradation of soil structure in cropland land use, the majority of pores observed in thin section are vugh and plane. Also, the results of image analysis showed that in natural forests and orchard land uses, pores with diameters ranging from 2 to greater than 10 micrometer and areas ranging from 500 to greater than 1000 square micrometers had the highest frequency in terms of percentage of soil pores. Hence, these soils are considered as quite porous class, while in cropland land use, tillage results in the degradation of large pores showed that pores with diameters less than 2 to 10 micrometers and areas smaller than 5 to 50 square micrometers comprised and the highest percentage of soil pores. 
Conclusion Asignificant amount of organic matter and low bulk density, and the highest percentage of total porosity are found in natural forest and orchard land uses, while deforestation and cultivation in cropland land use has led to compression and destruction of soil structure. This fact reflects itself in the increased bulk density and decreased total porosity. Agricultural practice has a significant effect on destruction of surface soil structure. Microstructure and voids of cropland land use are mainly massive and angular blocky and plane and vughs, respectively. With changes of land use from forest to cropland, and consequently incorrect land management causes decrease in organic matter. Shortage of organic matter causes decreasing biological activity in surface soils. The best way to prevent degradation of the soil in this area is to preserve natural forests and change cropland land use to orchard and artificial forest land uses.

کلیدواژه‌ها [English]

  • Micromorphology
  • Image analysis
  • Microstructure
  • Porosity
  • Land use
  1. Adesodun, J.K., Davidson, D.A., and Hopkins, D.W. 2005. Micromorphological evidence for faunal activity   following application of sewage and biocide. Applied Soil Ecology, 29: 39–45.
  2. Alvarez, C., Alvarez, C.R., Costantini, A., and Basanta, M. 2014. Carbon and nitrogen sequestration in soils under different management in the semi-arid Pampa (Argentina). Soil and Tillage Research, 142: 25-31.
  3. Arnhold, S., Otieno, D., Onyango, J., Koellner, T., Huwe, B., and Tenhunen, J. 2015. Soil properties along a gradient from hillslopes to the savanna plains in the Lambwe Valley, Kenya. Soil and Tillage Research, 154: 75-83.
  4. Ayoubi, S., Emami, N., Ghaffari, N., Honarjoo, N., and Sahrawat, K.L. 2014. Pasture degradation effects on soil quality indicators at different hillslope positions in a semiarid region of western Iran. Environmental Earth Sciences, 71(1): 375-381.
  5. Ayoubi, S., Mokhtari Karchegani, P., Mosaddeghi, M.R., and Honarjoo, N. 2012. Soil aggregation and organic carbon as affected by topography and land use change in western Iran. Soil and Tillage Research, 121: 18–26.
  6. Ayoubi, S., Khormali, F., Sahrawat, K.L., and Rodrigues de Lima, A.C. 2011. Assessing impact of land use change on soil quality indicators in a loessial soil in Golestan province, Iran. Journal of Agricultural Science and Technology, 13: 727–742.
  7. Bastrom, U. 1995. Earthworm population (Lumbricidae) in ploughed and undisturbed soils. Soil and Tillage Research, 35: 125-133.
  8. Becze-Deak, J., Langhor, R., and Verrechia, E.P. 1997. Small scale secondary CaCO3 accumulations in selected section of the European loess belt. Geoderma, 76: 221-252.
  9. Blake, G.R., and Hartge, K.H. 1986. Bulk density. In: Klute, A. (ed.), Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods. Soil Science Society of America and American Society of Agronomy, Madison, WI, USA. pp: 363-375.
    1. Bouyoucos, G.J. 1962. Hydrometer method improved for making particle size analysis of soils. Agronomy Journal, 54: 464-465.
    2. Brewer, R. 1976. Fabric and Mineral Analysis of Soils. Krieger, New York, USA. pp: 482.
    3. Bruun, T.B., Elberling, B., Neergaard, A., and Magid, J. 2015. Organic carbon dynamics in different soil types after conversion of forest to agriculture. Land Degradation and Development, 26(3): 272-283.
    4. Chapman, H.D. 1965. Cation exchange capacity. In: Black, C.A. (ed.), Methods of Soil Analysis. Part 2: Chemical and Microbiological Properties. Soil Science Society of America and American Society of Agronomy, Madison, WI, USA. pp: 891-901.
    5. Da Costa, P.A., Mota, J.C.A., Romero, R.E., Freire, A.G., and Ferreira, T.O. 2014. Changes in soil pore network in response to twenty-three years of irrigation in a tropical semiarid pasture from northeast Brazil. Soil and Tillage Research, 137: 23–32.
    6. Glab, T. 2007. Application of image analysis for soil macropore characterization according to pore diameter. International Agrophysics, 21: 61-66.
    7. Glab, T., and Kulig, B. 2008. Effect of mulch and tillage system on soil porosity under wheat. Soil and Tillage Research, 99: 169-178.
    8. Hall, T.B., Rosillo-Calle, F., Williams R.H., and Woods. J. 1993. Biomass for energy: supply prospects. In:Hall, T.B., Kelly, H. A. K. N. Reddy and R. H. Williams, (ed.), Renewable Energy: Sources for Fuels and Electricity. Island Press, Washington D.C. pp: 593–651.
    9. Heidari, A., and Mahmoudi, Sh. 2005. Image analysis using in soil micromorphology, 9th Iranian Soil Science congress, Karaj. (In Persian)
    10. 19- Jiang, S., Kang, Y., and Sun, Z. 2004. A digital image method for analysis of soil pores. In: Chunjiang, Z. (ed.). Computer and Computing Technologies in Agriculture II, Volume 2, Springer. pp: 1029-1038.
    11. Kemp, R.A., Toms, P.S., Sayago, J.M., Derbyshire, E., King, M., and Wagoner, L.2003. Micromorphology and OSL Dating of the basal part of the loess-paleosol sequence at La Mesada in Tucuman province, Northwest Argentina. Quarternary Intrernational, 106: 111-117.
    12. Kemper, W.D., and Rosenau, R.C.  1986. Aggregate stability and size distribution. In: Klute, A. (ed.), Methods of Soil Analysis. Part 1: Physical and Mineralogical Methods. Soil Science Society of America and American Society of Agronomy, Madison, WI, USA. pp: 425-442.
    13. Khormali, F. 2005. Application of image analysis and microscopic methods for estimation of porosity and gypsum in Gypsiferous soils. 9th Iranian Soil Science congress, Karaj. (In Persian)
    14. Khormali, F., and Ajami, M. 2011. Pedogenetic investigation of soil degradation on a deforested loess hillslope of Golestan Province, Northern Iran. Geoderma, 167: 274-283.
    15. Khormali, F., Ajami, M., Ayoubi, S., Srinivasarao, C.H., and Wani, S.P. 2009. Role of deforestation and hillslope position on soil quality attributes of loess-derived soils in Golestan Province, Iran. Agriculture, Ecosystems and Environment, 134: 178–189.
    16. Khormali, F., Abtahi, A., and Stoops, G. 2006. Micromorphology of calcitic features in highly calcareous soils of Fars Province, Southern Iran. Geoderma, 132: 31-46.
    17. Kodesova, R. 2009. Soil micromorphology use for modeling of a non equilibrium water and solute movement. Plant, Soil and Environment, 55: 424–428.
    18. Kubiena, W.L. 1938. Micropedology. Collegiate Press, Ames, USA. p: 242.
    19. Lipiec, J., Hajnos, M., and Ewieboda, R. 2012. Estimating effects of compaction on pore size distribution of soil aggregates by mercury porosimeter. Geoderma, 179: 20–27.
    20. Lu, S.G., Malik, Z., Chen, D.P., and Wu, C.F. 2014. Porosity and pore size distribution of Ultisols and correlations to soil iron oxides. Catena, 123:79-87.
    21. Mahmoodabadi, S.S., and Khormali, F. 2011. Micromorphology of the Loess Derived Soils Affected by Land Use Change: A Case Study in Agh-Su Area (Golestan Province). Journal of Water and Soil Science (Journal of Science and Technology of Agriculture and Natural Resources), 55: 111-125. (In Persian with English Abstract).
    22. McLean, E.O. 1982. Soil pH and lime requirement. In: Page, A.L. (ed.): Methods of soil analysis. Part 2: Chemical and microbiological properties. Soil Science Society of America and American Society of Agronomy, Madison, WI, USA. pp: 199-224.
    23. Mirkarimi, M., Khormali, F., Kiani, F., and Akef, M. 2011. Micromorphological investigation of mollic epipedon porosity in Mollisols of the southern Gorgan River under different land uses. Journal of water and soil conservation,­ 18(1): 181­-­197. (In Persian with English Abstract).
    24. Mohammadi, Z., Akef, M., Naghdi, R., Bagheri, I., and Sayyadi, A.R. 2011. Comparison of voids in forest soils with compaction and no compaction using image analysis. 12th Iranian Soil Science congress, Tabriz (In Persian with English Abstract).
    25. Mojiri, A., Kazemi, Z., and Amirossadat, Z. 2011. Effects of land use changes and hillslope position on soil quality attributes (A case study: Fereydoonshahr, Iran). African journal of Agricultural Research, 6(5): 1114-1119.
    26. Movahedi Naeini, AR., and Rezaei, M. 2008. Soil Physics (Fundamentals and Application). Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran. p: 474.
    27. 36- Munkholm, L.J., Heck, R.J., and Deen, B. 2012. Soil pore characteristics assessed from X-ray micro-CT derived images and correlations to soil friability. Geoderma, 181: 22–29.
    28. Murphy, C.P., Bullock, P., and Turner, R.H. 1977. The measurement and characterization of voids in soil thin sections by image analysis. Part I: Principles and techniques. Journal of Soil Science, 28: 498–508.
    29. Nelson, D.W., and Sommers, L.E. 1982. Total carbon, organic carbon, and organic matter, In: Buxton, D.R. (ed.), Methods of Soil Analysis. Part 2: Chemical and Microbiological Properties. Soil Science Society of America and American Society of Agronomy, Madison, WI, USA. pp: 539-579,
    30. Page, M.C., Sparks, D.L. Noll, M.R., and Hendricks, G.J. 1987. Kinetics and mechanisms of potassium release from sandy Middle Atlantic Coastal Plain soils. Soil Science Society America Journal, 51: 1460-1465.
    31. Pagliai, M. 1988. Soil porosity aspects. International Agrophysics, 4(3): 215-232.
    32. Pagliai, M., Rousseva, S., Vignozzi, N., Piovanelli, C., Pellegrini, S., and Miclaus, N. 1998. Tillage Impact on Soil Quality. 1: Soil Porosity and Related Physical Properties. Italian Journal. Agronomy, 2: 11-20.
    33. Pagliai, M., and Vignozzi, N. 2002. The soil pore system as an Indicator of soil quality. Sustainable Land Management-Environmental Protection, Advance in Geoecology. 35: 69-80.
    34. Raheb, A.R., and Heidari, A.­ 2014. Micromorphlogical studies of soils with aquic conditions by image analysis. Journal of water and soil conservation. Journal of Agricultural Sciences and Natural Resources, 21(3): 123-14­3. (In Persian with English Abstract)
    35. Rasa, K., Eickhorst, T., Tippkötter, R., and Yli-Halla, M. 2012. Structure and pore system in differently managed clayey surface soil as described by micromorphology and image analysis. Geoderma, 173: 10-18.
    36. Rhoades, J.D. 1982. Soluble salts In: A.L. (ed.), Methods of soil analysis. Part 2: Chemical and Microbiological Properties. Soil Science Society of America and American Society of Agronomy, Madison, WI, USA. pp: 167-179.
    37. Soil Survey Staff. 2014. Keys to Soil Taxonomy, 12th ed. United States Department of Agriculture Natural Resources Conservation Service. p: 370.
    38. Stoops, G. 2003. Guidelines for Analysis and Description of Soil and Regolith Thin Sections. Soil Science Society of America. Madison, WI, USA. p: 184.
    39. Verrecchia, E.P., and Verrecchia, K.E. 1994. Needle-fiber calcite: a critical review and a proposed classification.  Journal of Sedimentary Research. 64(3): 650-664.
    40. Wairiu, M., and Lal, R. 2006. Tillage and land use effects on soil microporosity in Ohio, USA and Kolombangara, Solomon Islands. Soil and Tillage Research, 88: 80-84.
    41. Wilding, N.E., Smeck, A., and Hall, G.F., 1982. Pedogenesis and Soil Taxonomy. II. The Soil. Orders. Developments in Soil Science. Elsevier. p: 410.