نوع مقاله : کاربردی

نویسندگان

1 استادیار فعلی گروه مهندسی بیوسیستم دانشگاه شهید چمران اهواز، اهواز، ایران و دانشجوی دکتری سابق گروه ماشین‌های کشاورزی دانشکده مهندسی و فناوری کشاورزی، دانشگاه تهران.

2 استاد گروه مهندسی ماشین‌های کشاورزی، دانشکده مهندسی و فناوری کشاورزی، دانشگاه تهران، کرج، ایران.

چکیده

ارزیابی اثرات زیست محیطی اتانول تولیدی از ملاس نیشکر در ایران با استفاده از مدل سیماپرو انجام پذیرفت. داده­های مورد نیاز از شرکت کشت و صنعت و توسعه نیشکر، کشت و صنعت کارون و اطلاعات ثبت شده حاصل گردید. دو سناریوی مختلف از تولید اتانول (سامانه موجود و سامانه اصلاح شده) در نظر گرفته شد و اثرات  زیست محیطی دو سامانه با همدیگر مقایسه شد. بر اساس نتایج و با وضع موجود در زمینه میزان انتشار آلاینده­های زیست محیطی در کل چرخه حیات، تفاوت معنی‌داری بین اتانول و گازوییل دیده نمی­شود. اما با تولید برق از باگاس، مقدار اثرات زیست محیطی ناشی از تولید اتانول تا 10 درصد کاهش خواهد یافت. در حال حاضر میزان انتشار گازهای گلخانه­ای اتانول 60 درصد کمتر از انتشار آلاینده­های مربوط به گازوییل می­باشد که با تولید برق از باگاس این میزان کاهش به 70 درصد هم خواهد رسید. با اعمال راهکارهای مدیریتی مناسب ذکر شده می­توان منافع زیست محیطی و انرژی فراوانی را کسب کرد که جایگزینی گازوییل مصرفی در حمل و نقل را با اتانول موجه می­سازد. حتی با وضعیت موجود و از آنجا که محصول اصلی صنایع نیشکر در ایران، شکر می­باشد و ملاس به عنوان یک محصول جانبی و درجه دوم اهمیت قرار دارد، تولید اتانول از ملاس، توجیه‌پذیر می­باشد چرا که تولید آن از اتلاف یک ماده گران‌بها جلوگیری به عمل آورده و از تحمیل بارهای زیست محیطی بیشتر (در اثر دفع ملاس) ممانعت به عمل می­آورد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Life cycle assessment, Ethanol, Sugarcane, Biofuel

نویسندگان [English]

  • M. Soleymani 1
  • Alireza Keyhani 2
  • Mahmood Omid 2

1 Current Assistant Professor, Department of Biosystems Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran, and Former PhD Student of Department of Agricultural Machinery Engineering, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Iran.

2 Professor, Department of Agricultural Machinery Engineering, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Iran.

چکیده [English]

Introduction Replacing fossil fuels with renewable and environmentally friendly fuels is so essential, due to issues such as climate change, increasing fossil fuels prices, energy security and limitations of fossil fuels resources. Alternatives are wind energy, solar energy, geothermal energy, hydropower, biomass and biofuel. Currently, ethanol produced from sugarcane in Brazil or from corn in USA is the most dominant bioufuel in the world. However there is no comprehensive agreement on the environmental benefits of alternative fuels including ethanol. The aim of this study was to conduct a LCA (Life Cycle Assessment) on ethanol produced from sugarcane molasses in Iran and also to compare its environmental impacts with a conventional fossil fuel.
Materials and Methods All required data was obtained from Sugarcane Agro-industry and ancillary Industry Development, Karoon Agro-Industry and also from recorded databases. Economic allocation was chosen to allocate emissions between the main product and the byproducts. Also, Simapro software was applied to model and evaluate the life cycle environmental effects in the life cycle of sugarcane molasses based ethanol (from cultivating sugarcane to burn ethanol into the engine). Two different scenarios of ethanol production (existing system and modified system) were considered and the environmental impacts of these two systems were compared with each other. Finally the environmental impacts of whole life cycle of molasses based ethanol were compared to that’s of diesel as a conventional fossil fuel.
Results and Discussion Life cycle inventory results showed that electricity, P2O5 and urea respectively had the most negative environmental impacts through the life cycle of molasses based ethanol. Replacing the fossil fuel originated electricity with electricity from renewable resources can have a significant effect on reducing the amount of these negative impacts. Also, producing electricity in the nearest location to the consumption sites will reduce the power transmission losses and consequently reduce these impacts. Since the major share of electricity is used for pumping water to the field, better management of water consumption is so essential.
According to the results, in case of emissions, there was significant difference between diesel fuel and sugarcane molasses ethanol in the base scenario. But by modifying the production system and using bagass to produce biogas or electricity (scenario 2), the environmental impacts of life cycle of sugarcane molasses based ethanol would reduce by 10%. Even now, the amount of greenhouse gas (GHG) emission of ethanol is 60% lower than these emissions of diesel fuel. This reduction will reach 70% if wasted bagass in ordinary production system is used to produce biogas and electricity.
Comparing with diesel fuel, Molasses based ethanol had less negative impacts on impact categories such as Respiration Inorganics, Climate Change, Acidification/Eutrofication, and fossil fuels and more negative impacts on categories such as Land Use and Carcinogens, only because of using land and also using herbicides and pesticides to cultivate sugarcane.
Greenhouse gas emission in the life cycle of one mega joule molasses based ethanol, estimated by Biograce model, is respectively 69, 70 and 60 percent lower than that of gasoline, diesel and natural gas.
Due to undeveloped industries to process sugarcane and its byproducts in Iran, studies on the production of ethanol from molasses or electricity from bagass are in the area of ​​waste management. Therefore, in these cases, even if it there was suitable energy or environmental indicato, continuing the production of these products is justified according to other side issues including environmental benefits and employment.
Conclusion In terms of environmental aspects, in the current situation there are no significant differences between ethanol and diesel. But if bagass is used to generate electricity, the environmental impact of ethanol production will reach reduced by 10%. Greenhouse gas emissions of ethanol is 60% lower than that of from diesel and this amount will be 70%, if wasted bagass is used to produce biogas or electricity.
It is possible to obtain more environmental benefits by applying appropriate management strategies in ethanol production system (such as producing value added products from bagass or other waste materials). Since sugar is the main product in sugarcane industry in Iran and approximately all other byproducts are wasted, to prevent the loss of this valuable byproduct, producing ethanol from molasses, even if in current situation and with current production system is acceptable. 

کلیدواژه‌ها [English]

  • Life Cycle Assessment
  • Ethanol
  • Sugarcane
  • Biofuel
  1. Anonymous. 2014. Energy balance sheet of Iran in 2012. Department of power and energy affairs in ministry of energy. Office of macro planning of energy and power. (in Persian).
  2. Anonymous. 2014. Detailed stats of Iran's power industry, electric power generation in 2013.  Tavanir Holding. (in Persian).
  3. Beer, T., and Grant, T. 2007. Life-cycle analysis of emissions from fuel ethanol and blends in Australian heavy and light vehicles. Journal of Cleaner Production, 15 (8): 833-837.
  4. Bringezu, S., Ramesohl, S., Arnold, K., Fischedick, M., and von Geibler, J. 2007. Towards a sustainable biomass strategy: What we know and what we should know. Wuppertal Papers, 163: 1-50.
  5. Crutzen, P. J., Mosier, A. R., Smith, K. A., and Winiwarter, W. 2008. N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmospheric Chemistry and Physics, 8 (2): 389-395.
  6. Dragone, G., Fernandes, B.D., Vicente, A.A., and Teixeira, J.A. 2010. Third generation biofuels from microalgae. Available at: <http://www.formatex.info/microbiology2/1355-1366.pdf> (accessed 7. 9.13(
  7. Edwards, R., Mahieu, V., Griesemann, J.C., Larive, J.F., and Rickeard, D.J. 2004. Well-to-wheels analysis of future automotive fuels and powertrains in the European context. SAE transactions, 113 (4): 1072-1084.
  8. Eisentraut, A. 2010. Sustainable production of second-generation biofuels: potential and perspectives in major economies and developing countries (No. 2010/1). OECD Publishing.
  9. FAO. 2008. Bioenergy, food security and sustainability – towards an international framework. High-level conference on world food security: The challenges of climate change and bioenergy, Rome 3 -5 June.
  10. Farrell, A.E., Plevin, R.J., Turner, B.T., Jones, A.D., O'hare, M., and Kammen, D M. 2006. Ethanol can contribute to energy and environmental goals. Science, 311 (5760): 506-508.
  11. Franke, B., and Reinhardt, G. 1998. Environmental impacts of Biodiesel use. In Proceedings, Bio Energy, 98: 1032-1041.
  12. Guinée, J. B. 2002. Handbook on life cycle assessment operational guide to the ISO standards. The International Journal of Life Cycle Assessment, 7 (5): 311-313.
  13. Hill, J., Nelson, E., Tilman, D., Polasky, S., and Tiffany, D. 2006. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proceedings of the National Academy of Sciences, 103 (30): 11206-11210.
  14. Hodge, C. 2002. Ethanol use in US gasoline should be banned, not expanded. Oil and Gas Journal, 100 (37): 20-20.
  15. Jung, K.A., Lim, S.R., Kim, Y., and Park, J.M. 2012. Potentials of macroalgae as feedstocks for biorefinery. Bioresource Technology, 135: 182–190.
  16. Kim, S., and Dale, B.E. 2005. Life cycle assessment of various cropping systems utilized for producing biofuels: Bioethanol and biodiesel. Biomass and Bioenergy, 29 (6): 426-439.
  17. Nanaki, E.A., and Koroneos, C. J. 2012. Comparative LCA of the use of biodiesel, diesel and gasoline for transportation. Journal of Cleaner Production, 20 (1): 14-19.
  18. Nguyen, T.L.T., Gheewala, S.H., and Garivait, S. 2007. Full chain energy analysis of fuel ethanol from cassava in Thailand. Environmental Science and Technology, 41 (11): 4135-4142.
  19. Pieragostini, C., Aguirre, P., and Mussati, M.C. 2014. Life cycle assessment of corn-based ethanol production in Argentina. Science of the Total Environment, 472: 212-225.
  20. Pimentel, D. 2003. Ethanol fuels: energy balance, economics, and environmental impacts are negative. Natural Resources Research, 12 (2): 127-134.
  21. Pleanjai, S., Gheewala, S.H., and Garivait, S. 2009. Greenhouse gas emissions from production and use of used cooking oil methyl ester as transport fuel in Thailand. Journal of Cleaner Production, 17 (9): 873-876.
  22. Pradhan, A. 2010. Life cycle analysis of soybean biodiesel production. Ph. D. desertation. University of Idaho.
  23. Puppan, D. 2002. Environmental evaluation of biofuels. Social and Management Sciences, 10 (1): 95-116.
  24. Renó, M.L.G., Lora, E.E.S., Palacio, J.C.E., Venturini, O.J., Buchgeister, J., and Almazan, O. 2011. A LCA (life cycle assessment) of the methanol production from sugarcane bagasse. Energy, 36 (6): 3716-3726.
  25. Roesijad, G., Jones, S.B., Snowden-Swan, L.J., and Zhu, Y. 2010. Macroalgae as a biomass feedstock: a preliminary analysis, PNNL 19944. Pacific Northwest National Laboratory, USA Cross Ref.
  26. Silalertruksa, T., and Gheewala, S.H. 2009. Environmental sustainability assessment of bio-ethanol production in Thailand. Energy, 34 (11), 1933-1946.
  27. Worldwatch Institute. 2007. Biofuels for transport: Global potential and implications for sustainable energy and agriculture. Prepared by the worldwatch institute for the German federal ministry of food, agriculture and consumer protection (BMELV), in cooperation with the agency for technical cooperation (GTZ) and the agency of renewable resourcs (FNR). Washington, D. C.